| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbnf2 | Unicode version | ||
| Description: Two ways of expressing
" | 
| Ref | Expression | 
|---|---|
| sbnf2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2albiim 1502 | 
. 2
 | |
| 2 | df-nf 1475 | 
. . . . 5
 | |
| 3 | sbhb 1959 | 
. . . . . 6
 | |
| 4 | 3 | albii 1484 | 
. . . . 5
 | 
| 5 | alcom 1492 | 
. . . . 5
 | |
| 6 | 2, 4, 5 | 3bitri 206 | 
. . . 4
 | 
| 7 | nfv 1542 | 
. . . . . . 7
 | |
| 8 | 7 | sb8 1870 | 
. . . . . 6
 | 
| 9 | nfs1v 1958 | 
. . . . . . . 8
 | |
| 10 | 9 | sblim 1976 | 
. . . . . . 7
 | 
| 11 | 10 | albii 1484 | 
. . . . . 6
 | 
| 12 | 8, 11 | bitri 184 | 
. . . . 5
 | 
| 13 | 12 | albii 1484 | 
. . . 4
 | 
| 14 | alcom 1492 | 
. . . 4
 | |
| 15 | 6, 13, 14 | 3bitri 206 | 
. . 3
 | 
| 16 | sbhb 1959 | 
. . . . . 6
 | |
| 17 | 16 | albii 1484 | 
. . . . 5
 | 
| 18 | alcom 1492 | 
. . . . 5
 | |
| 19 | 2, 17, 18 | 3bitri 206 | 
. . . 4
 | 
| 20 | nfv 1542 | 
. . . . . . 7
 | |
| 21 | 20 | sb8 1870 | 
. . . . . 6
 | 
| 22 | nfs1v 1958 | 
. . . . . . . 8
 | |
| 23 | 22 | sblim 1976 | 
. . . . . . 7
 | 
| 24 | 23 | albii 1484 | 
. . . . . 6
 | 
| 25 | 21, 24 | bitri 184 | 
. . . . 5
 | 
| 26 | 25 | albii 1484 | 
. . . 4
 | 
| 27 | 19, 26 | bitri 184 | 
. . 3
 | 
| 28 | 15, 27 | anbi12i 460 | 
. 2
 | 
| 29 | anidm 396 | 
. 2
 | |
| 30 | 1, 28, 29 | 3bitr2ri 209 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: sbnfc2 3145 | 
| Copyright terms: Public domain | W3C validator |