Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbnf2 | Unicode version |
Description: Two ways of expressing " is (effectively) not free in ." (Contributed by Gérard Lang, 14-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
sbnf2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albiim 1481 | . 2 | |
2 | df-nf 1454 | . . . . 5 | |
3 | sbhb 1933 | . . . . . 6 | |
4 | 3 | albii 1463 | . . . . 5 |
5 | alcom 1471 | . . . . 5 | |
6 | 2, 4, 5 | 3bitri 205 | . . . 4 |
7 | nfv 1521 | . . . . . . 7 | |
8 | 7 | sb8 1849 | . . . . . 6 |
9 | nfs1v 1932 | . . . . . . . 8 | |
10 | 9 | sblim 1950 | . . . . . . 7 |
11 | 10 | albii 1463 | . . . . . 6 |
12 | 8, 11 | bitri 183 | . . . . 5 |
13 | 12 | albii 1463 | . . . 4 |
14 | alcom 1471 | . . . 4 | |
15 | 6, 13, 14 | 3bitri 205 | . . 3 |
16 | sbhb 1933 | . . . . . 6 | |
17 | 16 | albii 1463 | . . . . 5 |
18 | alcom 1471 | . . . . 5 | |
19 | 2, 17, 18 | 3bitri 205 | . . . 4 |
20 | nfv 1521 | . . . . . . 7 | |
21 | 20 | sb8 1849 | . . . . . 6 |
22 | nfs1v 1932 | . . . . . . . 8 | |
23 | 22 | sblim 1950 | . . . . . . 7 |
24 | 23 | albii 1463 | . . . . . 6 |
25 | 21, 24 | bitri 183 | . . . . 5 |
26 | 25 | albii 1463 | . . . 4 |
27 | 19, 26 | bitri 183 | . . 3 |
28 | 15, 27 | anbi12i 457 | . 2 |
29 | anidm 394 | . 2 | |
30 | 1, 28, 29 | 3bitr2ri 208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wnf 1453 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sbnfc2 3109 |
Copyright terms: Public domain | W3C validator |