ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrel Unicode version

Theorem eqrel 4763
Description: Extensionality principle for relations. Theorem 3.2(ii) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
eqrel  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem eqrel
StepHypRef Expression
1 ssrel 4762 . . 3  |-  ( Rel 
A  ->  ( A  C_  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
) ) )
2 ssrel 4762 . . 3  |-  ( Rel 
B  ->  ( B  C_  A  <->  A. x A. y
( <. x ,  y
>.  e.  B  ->  <. x ,  y >.  e.  A
) ) )
31, 2bi2anan9 606 . 2  |-  ( ( Rel  A  /\  Rel  B )  ->  ( ( A  C_  B  /\  B  C_  A )  <->  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  /\  A. x A. y ( <. x ,  y >.  e.  B  -> 
<. x ,  y >.  e.  A ) ) ) )
4 eqss 3207 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 2albiim 1510 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )  <->  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  /\  A. x A. y ( <. x ,  y >.  e.  B  -> 
<. x ,  y >.  e.  A ) ) )
63, 4, 53bitr4g 223 1  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1370    = wceq 1372    e. wcel 2175    C_ wss 3165   <.cop 3635   Rel wrel 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-opab 4105  df-xp 4680  df-rel 4681
This theorem is referenced by:  eqrelriv  4767  eqrelrdv  4770  eqbrrdv  4771  eqrelrdv2  4773  opabid2  4808  reldm0  4895  iss  5004  asymref  5067  funssres  5312  fsn  5751
  Copyright terms: Public domain W3C validator