ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrel Unicode version

Theorem eqrel 4807
Description: Extensionality principle for relations. Theorem 3.2(ii) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
eqrel  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem eqrel
StepHypRef Expression
1 ssrel 4806 . . 3  |-  ( Rel 
A  ->  ( A  C_  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
) ) )
2 ssrel 4806 . . 3  |-  ( Rel 
B  ->  ( B  C_  A  <->  A. x A. y
( <. x ,  y
>.  e.  B  ->  <. x ,  y >.  e.  A
) ) )
31, 2bi2anan9 608 . 2  |-  ( ( Rel  A  /\  Rel  B )  ->  ( ( A  C_  B  /\  B  C_  A )  <->  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  /\  A. x A. y ( <. x ,  y >.  e.  B  -> 
<. x ,  y >.  e.  A ) ) ) )
4 eqss 3239 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 2albiim 1534 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )  <->  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  /\  A. x A. y ( <. x ,  y >.  e.  B  -> 
<. x ,  y >.  e.  A ) ) )
63, 4, 53bitr4g 223 1  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395    e. wcel 2200    C_ wss 3197   <.cop 3669   Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4145  df-xp 4724  df-rel 4725
This theorem is referenced by:  eqrelriv  4811  eqrelrdv  4814  eqbrrdv  4815  eqrelrdv2  4817  opabid2  4852  reldm0  4940  iss  5050  asymref  5113  funssres  5359  fsn  5806
  Copyright terms: Public domain W3C validator