| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrelrel | Unicode version | ||
| Description: Extensionality principle for ordered triples, analogous to eqrel 4807. Use relrelss 5254 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) |
| Ref | Expression |
|---|---|
| eqrelrel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss 3378 |
. 2
| |
| 2 | ssrelrel 4818 |
. . . 4
| |
| 3 | ssrelrel 4818 |
. . . 4
| |
| 4 | 2, 3 | bi2anan9 608 |
. . 3
|
| 5 | eqss 3239 |
. . 3
| |
| 6 | 2albiim 1534 |
. . . . 5
| |
| 7 | 6 | albii 1516 |
. . . 4
|
| 8 | 19.26 1527 |
. . . 4
| |
| 9 | 7, 8 | bitri 184 |
. . 3
|
| 10 | 4, 5, 9 | 3bitr4g 223 |
. 2
|
| 11 | 1, 10 | sylbir 135 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-xp 4724 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |