ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrelrel Unicode version

Theorem eqrelrel 4760
Description: Extensionality principle for ordered triples, analogous to eqrel 4748. Use relrelss 5192 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
eqrelrel  |-  ( ( A  u.  B ) 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  =  B  <->  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  <->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z

Proof of Theorem eqrelrel
StepHypRef Expression
1 unss 3333 . 2  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  B  C_  ( ( _V  X.  _V )  X.  _V )
)  <->  ( A  u.  B )  C_  (
( _V  X.  _V )  X.  _V ) )
2 ssrelrel 4759 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  C_  B 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
3 ssrelrel 4759 . . . 4  |-  ( B 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( B  C_  A 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
42, 3bi2anan9 606 . . 3  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  B  C_  ( ( _V  X.  _V )  X.  _V )
)  ->  ( ( A  C_  B  /\  B  C_  A )  <->  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) ) )
5 eqss 3194 . . 3  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
6 2albiim 1499 . . . . 5  |-  ( A. y A. z ( <. <. x ,  y >. ,  z >.  e.  A  <->  <. <. x ,  y >. ,  z >.  e.  B
)  <->  ( A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
76albii 1481 . . . 4  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  <->  <. <. x ,  y
>. ,  z >.  e.  B )  <->  A. x
( A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
8 19.26 1492 . . . 4  |-  ( A. x ( A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) )  <-> 
( A. x A. y A. z ( <. <. x ,  y >. ,  z >.  e.  A  -> 
<. <. x ,  y
>. ,  z >.  e.  B )  /\  A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
97, 8bitri 184 . . 3  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  <->  <. <. x ,  y
>. ,  z >.  e.  B )  <->  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
104, 5, 93bitr4g 223 . 2  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  B  C_  ( ( _V  X.  _V )  X.  _V )
)  ->  ( A  =  B  <->  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  <->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
111, 10sylbir 135 1  |-  ( ( A  u.  B ) 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  =  B  <->  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  <->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   _Vcvv 2760    u. cun 3151    C_ wss 3153   <.cop 3621    X. cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator