Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqrelrel | Unicode version |
Description: Extensionality principle for ordered triples, analogous to eqrel 4693. Use relrelss 5130 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) |
Ref | Expression |
---|---|
eqrelrel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss 3296 | . 2 | |
2 | ssrelrel 4704 | . . . 4 | |
3 | ssrelrel 4704 | . . . 4 | |
4 | 2, 3 | bi2anan9 596 | . . 3 |
5 | eqss 3157 | . . 3 | |
6 | 2albiim 1476 | . . . . 5 | |
7 | 6 | albii 1458 | . . . 4 |
8 | 19.26 1469 | . . . 4 | |
9 | 7, 8 | bitri 183 | . . 3 |
10 | 4, 5, 9 | 3bitr4g 222 | . 2 |
11 | 1, 10 | sylbir 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 cvv 2726 cun 3114 wss 3116 cop 3579 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |