ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqopab2b Unicode version

Theorem eqopab2b 4368
Description: Equivalence of ordered pair abstraction equality and biconditional. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
eqopab2b  |-  ( {
<. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }  <->  A. x A. y ( ph  <->  ps )
)

Proof of Theorem eqopab2b
StepHypRef Expression
1 ssopab2b 4365 . . 3  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } 
<-> 
A. x A. y
( ph  ->  ps )
)
2 ssopab2b 4365 . . 3  |-  ( {
<. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ph } 
<-> 
A. x A. y
( ps  ->  ph )
)
31, 2anbi12i 460 . 2  |-  ( ( { <. x ,  y
>.  |  ph }  C_  {
<. x ,  y >.  |  ps }  /\  { <. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ph } )  <->  ( A. x A. y ( ph  ->  ps )  /\  A. x A. y ( ps 
->  ph ) ) )
4 eqss 3239 . 2  |-  ( {
<. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }  <->  ( { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  /\  { <. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ph } ) )
5 2albiim 1534 . 2  |-  ( A. x A. y ( ph  <->  ps )  <->  ( A. x A. y ( ph  ->  ps )  /\  A. x A. y ( ps  ->  ph ) ) )
63, 4, 53bitr4i 212 1  |-  ( {
<. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }  <->  A. x A. y ( ph  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395    C_ wss 3197   {copab 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator