ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2rexbii Unicode version

Theorem 2rexbii 2515
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.)
Hypothesis
Ref Expression
ralbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
2rexbii  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x  e.  A  E. y  e.  B  ps )

Proof of Theorem 2rexbii
StepHypRef Expression
1 ralbii.1 . . 3  |-  ( ph  <->  ps )
21rexbii 2513 . 2  |-  ( E. y  e.  B  ph  <->  E. y  e.  B  ps )
32rexbii 2513 1  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x  e.  A  E. y  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-rex 2490
This theorem is referenced by:  3reeanv  2677  4fvwrd4  10262  prodmodc  11889  pythagtriplem2  12589  pythagtrip  12606
  Copyright terms: Public domain W3C validator