ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ralbii Unicode version

Theorem 2ralbii 2502
Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
Hypothesis
Ref Expression
ralbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
2ralbii  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x  e.  A  A. y  e.  B  ps )

Proof of Theorem 2ralbii
StepHypRef Expression
1 ralbii.1 . . 3  |-  ( ph  <->  ps )
21ralbii 2500 . 2  |-  ( A. y  e.  B  ph  <->  A. y  e.  B  ps )
32ralbii 2500 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x  e.  A  A. y  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-ral 2477
This theorem is referenced by:  rmo4f  2958  ordsoexmid  4594  cnvsom  5209  fununi  5322  tpossym  6329  axpre-suploc  7962  issubm  13044  isbasis2g  14213  ivthdich  14807
  Copyright terms: Public domain W3C validator