Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ralbii | Unicode version |
Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
Ref | Expression |
---|---|
ralbii.1 |
Ref | Expression |
---|---|
2ralbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii.1 | . . 3 | |
2 | 1 | ralbii 2460 | . 2 |
3 | 2 | ralbii 2460 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wral 2432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-4 1487 ax-17 1503 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-ral 2437 |
This theorem is referenced by: rmo4f 2906 ordsoexmid 4515 cnvsom 5122 fununi 5231 tpossym 6213 axpre-suploc 7801 isbasis2g 12390 |
Copyright terms: Public domain | W3C validator |