ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ralbii Unicode version

Theorem 2ralbii 2505
Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
Hypothesis
Ref Expression
ralbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
2ralbii  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x  e.  A  A. y  e.  B  ps )

Proof of Theorem 2ralbii
StepHypRef Expression
1 ralbii.1 . . 3  |-  ( ph  <->  ps )
21ralbii 2503 . 2  |-  ( A. y  e.  B  ph  <->  A. y  e.  B  ps )
32ralbii 2503 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x  e.  A  A. y  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-ral 2480
This theorem is referenced by:  rmo4f  2962  ordsoexmid  4598  cnvsom  5213  fununi  5326  tpossym  6334  axpre-suploc  7969  issubm  13104  isbasis2g  14281  ivthdich  14889
  Copyright terms: Public domain W3C validator