| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ralbii | Unicode version | ||
| Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| ralbii.1 |
|
| Ref | Expression |
|---|---|
| 2ralbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbii.1 |
. . 3
| |
| 2 | 1 | ralbii 2503 |
. 2
|
| 3 | 2 | ralbii 2503 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: rmo4f 2962 ordsoexmid 4599 cnvsom 5214 fununi 5327 tpossym 6343 axpre-suploc 7986 issubm 13174 isbasis2g 14365 ivthdich 14973 |
| Copyright terms: Public domain | W3C validator |