| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4fvwrd4 | Unicode version | ||
| Description: The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.) |
| Ref | Expression |
|---|---|
| 4fvwrd4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | 0nn0 9384 |
. . . . . . . . 9
| |
| 3 | elnn0uz 9760 |
. . . . . . . . 9
| |
| 4 | 2, 3 | mpbi 145 |
. . . . . . . 8
|
| 5 | 3nn0 9387 |
. . . . . . . . . . 11
| |
| 6 | elnn0uz 9760 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | mpbi 145 |
. . . . . . . . . 10
|
| 8 | uzss 9743 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . . 9
|
| 10 | 9 | sseli 3220 |
. . . . . . . 8
|
| 11 | eluzfz 10216 |
. . . . . . . 8
| |
| 12 | 4, 10, 11 | sylancr 414 |
. . . . . . 7
|
| 13 | 12 | adantr 276 |
. . . . . 6
|
| 14 | 1, 13 | ffvelcdmd 5771 |
. . . . 5
|
| 15 | risset 2558 |
. . . . . 6
| |
| 16 | eqcom 2231 |
. . . . . . 7
| |
| 17 | 16 | rexbii 2537 |
. . . . . 6
|
| 18 | 15, 17 | bitri 184 |
. . . . 5
|
| 19 | 14, 18 | sylib 122 |
. . . 4
|
| 20 | 1eluzge0 9769 |
. . . . . . . 8
| |
| 21 | 1z 9472 |
. . . . . . . . . . 11
| |
| 22 | 3z 9475 |
. . . . . . . . . . 11
| |
| 23 | 1le3 9322 |
. . . . . . . . . . 11
| |
| 24 | eluz2 9728 |
. . . . . . . . . . 11
| |
| 25 | 21, 22, 23, 24 | mpbir3an 1203 |
. . . . . . . . . 10
|
| 26 | uzss 9743 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . . . 9
|
| 28 | 27 | sseli 3220 |
. . . . . . . 8
|
| 29 | eluzfz 10216 |
. . . . . . . 8
| |
| 30 | 20, 28, 29 | sylancr 414 |
. . . . . . 7
|
| 31 | 30 | adantr 276 |
. . . . . 6
|
| 32 | 1, 31 | ffvelcdmd 5771 |
. . . . 5
|
| 33 | risset 2558 |
. . . . . 6
| |
| 34 | eqcom 2231 |
. . . . . . 7
| |
| 35 | 34 | rexbii 2537 |
. . . . . 6
|
| 36 | 33, 35 | bitri 184 |
. . . . 5
|
| 37 | 32, 36 | sylib 122 |
. . . 4
|
| 38 | 19, 37 | jca 306 |
. . 3
|
| 39 | 2eluzge0 9770 |
. . . . . . 7
| |
| 40 | uzuzle23 9766 |
. . . . . . 7
| |
| 41 | eluzfz 10216 |
. . . . . . 7
| |
| 42 | 39, 40, 41 | sylancr 414 |
. . . . . 6
|
| 43 | 42 | adantr 276 |
. . . . 5
|
| 44 | 1, 43 | ffvelcdmd 5771 |
. . . 4
|
| 45 | risset 2558 |
. . . . 5
| |
| 46 | eqcom 2231 |
. . . . . 6
| |
| 47 | 46 | rexbii 2537 |
. . . . 5
|
| 48 | 45, 47 | bitri 184 |
. . . 4
|
| 49 | 44, 48 | sylib 122 |
. . 3
|
| 50 | eluzfz 10216 |
. . . . . . 7
| |
| 51 | 7, 50 | mpan 424 |
. . . . . 6
|
| 52 | 51 | adantr 276 |
. . . . 5
|
| 53 | 1, 52 | ffvelcdmd 5771 |
. . . 4
|
| 54 | risset 2558 |
. . . . 5
| |
| 55 | eqcom 2231 |
. . . . . 6
| |
| 56 | 55 | rexbii 2537 |
. . . . 5
|
| 57 | 54, 56 | bitri 184 |
. . . 4
|
| 58 | 53, 57 | sylib 122 |
. . 3
|
| 59 | 38, 49, 58 | jca32 310 |
. 2
|
| 60 | r19.42v 2688 |
. . . . . 6
| |
| 61 | r19.42v 2688 |
. . . . . . 7
| |
| 62 | 61 | anbi2i 457 |
. . . . . 6
|
| 63 | 60, 62 | bitri 184 |
. . . . 5
|
| 64 | 63 | rexbii 2537 |
. . . 4
|
| 65 | 64 | 2rexbii 2539 |
. . 3
|
| 66 | r19.42v 2688 |
. . . . 5
| |
| 67 | r19.41v 2687 |
. . . . . 6
| |
| 68 | 67 | anbi2i 457 |
. . . . 5
|
| 69 | 66, 68 | bitri 184 |
. . . 4
|
| 70 | 69 | 2rexbii 2539 |
. . 3
|
| 71 | r19.41v 2687 |
. . . . . 6
| |
| 72 | r19.42v 2688 |
. . . . . . 7
| |
| 73 | 72 | anbi1i 458 |
. . . . . 6
|
| 74 | 71, 73 | bitri 184 |
. . . . 5
|
| 75 | 74 | rexbii 2537 |
. . . 4
|
| 76 | r19.41v 2687 |
. . . 4
| |
| 77 | r19.41v 2687 |
. . . . 5
| |
| 78 | 77 | anbi1i 458 |
. . . 4
|
| 79 | 75, 76, 78 | 3bitri 206 |
. . 3
|
| 80 | 65, 70, 79 | 3bitri 206 |
. 2
|
| 81 | 59, 80 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-2 9169 df-3 9170 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |