ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4fvwrd4 Unicode version

Theorem 4fvwrd4 9547
Description: The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
Assertion
Ref Expression
4fvwrd4  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  E. d  e.  V  ( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  (
( P `  2
)  =  c  /\  ( P `  3 )  =  d ) ) )
Distinct variable groups:    P, a, b, c, d    V, a, b, c, d
Allowed substitution hints:    L( a, b, c, d)

Proof of Theorem 4fvwrd4
StepHypRef Expression
1 simpr 108 . . . . . 6  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  P : ( 0 ... L ) --> V )
2 0nn0 8686 . . . . . . . . 9  |-  0  e.  NN0
3 elnn0uz 9054 . . . . . . . . 9  |-  ( 0  e.  NN0  <->  0  e.  (
ZZ>= `  0 ) )
42, 3mpbi 143 . . . . . . . 8  |-  0  e.  ( ZZ>= `  0 )
5 3nn0 8689 . . . . . . . . . . 11  |-  3  e.  NN0
6 elnn0uz 9054 . . . . . . . . . . 11  |-  ( 3  e.  NN0  <->  3  e.  (
ZZ>= `  0 ) )
75, 6mpbi 143 . . . . . . . . . 10  |-  3  e.  ( ZZ>= `  0 )
8 uzss 9037 . . . . . . . . . 10  |-  ( 3  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
3 )  C_  ( ZZ>=
`  0 ) )
97, 8ax-mp 7 . . . . . . . . 9  |-  ( ZZ>= ` 
3 )  C_  ( ZZ>=
`  0 )
109sseli 3021 . . . . . . . 8  |-  ( L  e.  ( ZZ>= `  3
)  ->  L  e.  ( ZZ>= `  0 )
)
11 eluzfz 9433 . . . . . . . 8  |-  ( ( 0  e.  ( ZZ>= ` 
0 )  /\  L  e.  ( ZZ>= `  0 )
)  ->  0  e.  ( 0 ... L
) )
124, 10, 11sylancr 405 . . . . . . 7  |-  ( L  e.  ( ZZ>= `  3
)  ->  0  e.  ( 0 ... L
) )
1312adantr 270 . . . . . 6  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  0  e.  ( 0 ... L ) )
141, 13ffvelrnd 5435 . . . . 5  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  ( P ` 
0 )  e.  V
)
15 risset 2406 . . . . . 6  |-  ( ( P `  0 )  e.  V  <->  E. a  e.  V  a  =  ( P `  0 ) )
16 eqcom 2090 . . . . . . 7  |-  ( a  =  ( P ` 
0 )  <->  ( P `  0 )  =  a )
1716rexbii 2385 . . . . . 6  |-  ( E. a  e.  V  a  =  ( P ` 
0 )  <->  E. a  e.  V  ( P `  0 )  =  a )
1815, 17bitri 182 . . . . 5  |-  ( ( P `  0 )  e.  V  <->  E. a  e.  V  ( P `  0 )  =  a )
1914, 18sylib 120 . . . 4  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  E. a  e.  V  ( P `  0 )  =  a )
20 1eluzge0 9060 . . . . . . . 8  |-  1  e.  ( ZZ>= `  0 )
21 1z 8774 . . . . . . . . . . 11  |-  1  e.  ZZ
22 3z 8777 . . . . . . . . . . 11  |-  3  e.  ZZ
23 1le3 8625 . . . . . . . . . . 11  |-  1  <_  3
24 eluz2 9023 . . . . . . . . . . 11  |-  ( 3  e.  ( ZZ>= `  1
)  <->  ( 1  e.  ZZ  /\  3  e.  ZZ  /\  1  <_ 
3 ) )
2521, 22, 23, 24mpbir3an 1125 . . . . . . . . . 10  |-  3  e.  ( ZZ>= `  1 )
26 uzss 9037 . . . . . . . . . 10  |-  ( 3  e.  ( ZZ>= `  1
)  ->  ( ZZ>= ` 
3 )  C_  ( ZZ>=
`  1 ) )
2725, 26ax-mp 7 . . . . . . . . 9  |-  ( ZZ>= ` 
3 )  C_  ( ZZ>=
`  1 )
2827sseli 3021 . . . . . . . 8  |-  ( L  e.  ( ZZ>= `  3
)  ->  L  e.  ( ZZ>= `  1 )
)
29 eluzfz 9433 . . . . . . . 8  |-  ( ( 1  e.  ( ZZ>= ` 
0 )  /\  L  e.  ( ZZ>= `  1 )
)  ->  1  e.  ( 0 ... L
) )
3020, 28, 29sylancr 405 . . . . . . 7  |-  ( L  e.  ( ZZ>= `  3
)  ->  1  e.  ( 0 ... L
) )
3130adantr 270 . . . . . 6  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  1  e.  ( 0 ... L ) )
321, 31ffvelrnd 5435 . . . . 5  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  ( P ` 
1 )  e.  V
)
33 risset 2406 . . . . . 6  |-  ( ( P `  1 )  e.  V  <->  E. b  e.  V  b  =  ( P `  1 ) )
34 eqcom 2090 . . . . . . 7  |-  ( b  =  ( P ` 
1 )  <->  ( P `  1 )  =  b )
3534rexbii 2385 . . . . . 6  |-  ( E. b  e.  V  b  =  ( P ` 
1 )  <->  E. b  e.  V  ( P `  1 )  =  b )
3633, 35bitri 182 . . . . 5  |-  ( ( P `  1 )  e.  V  <->  E. b  e.  V  ( P `  1 )  =  b )
3732, 36sylib 120 . . . 4  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  E. b  e.  V  ( P `  1 )  =  b )
3819, 37jca 300 . . 3  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  ( E. a  e.  V  ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b ) )
39 2eluzge0 9061 . . . . . . 7  |-  2  e.  ( ZZ>= `  0 )
40 uzuzle23 9057 . . . . . . 7  |-  ( L  e.  ( ZZ>= `  3
)  ->  L  e.  ( ZZ>= `  2 )
)
41 eluzfz 9433 . . . . . . 7  |-  ( ( 2  e.  ( ZZ>= ` 
0 )  /\  L  e.  ( ZZ>= `  2 )
)  ->  2  e.  ( 0 ... L
) )
4239, 40, 41sylancr 405 . . . . . 6  |-  ( L  e.  ( ZZ>= `  3
)  ->  2  e.  ( 0 ... L
) )
4342adantr 270 . . . . 5  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  2  e.  ( 0 ... L ) )
441, 43ffvelrnd 5435 . . . 4  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  ( P ` 
2 )  e.  V
)
45 risset 2406 . . . . 5  |-  ( ( P `  2 )  e.  V  <->  E. c  e.  V  c  =  ( P `  2 ) )
46 eqcom 2090 . . . . . 6  |-  ( c  =  ( P ` 
2 )  <->  ( P `  2 )  =  c )
4746rexbii 2385 . . . . 5  |-  ( E. c  e.  V  c  =  ( P ` 
2 )  <->  E. c  e.  V  ( P `  2 )  =  c )
4845, 47bitri 182 . . . 4  |-  ( ( P `  2 )  e.  V  <->  E. c  e.  V  ( P `  2 )  =  c )
4944, 48sylib 120 . . 3  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  E. c  e.  V  ( P `  2 )  =  c )
50 eluzfz 9433 . . . . . . 7  |-  ( ( 3  e.  ( ZZ>= ` 
0 )  /\  L  e.  ( ZZ>= `  3 )
)  ->  3  e.  ( 0 ... L
) )
517, 50mpan 415 . . . . . 6  |-  ( L  e.  ( ZZ>= `  3
)  ->  3  e.  ( 0 ... L
) )
5251adantr 270 . . . . 5  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  3  e.  ( 0 ... L ) )
531, 52ffvelrnd 5435 . . . 4  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  ( P ` 
3 )  e.  V
)
54 risset 2406 . . . . 5  |-  ( ( P `  3 )  e.  V  <->  E. d  e.  V  d  =  ( P `  3 ) )
55 eqcom 2090 . . . . . 6  |-  ( d  =  ( P ` 
3 )  <->  ( P `  3 )  =  d )
5655rexbii 2385 . . . . 5  |-  ( E. d  e.  V  d  =  ( P ` 
3 )  <->  E. d  e.  V  ( P `  3 )  =  d )
5754, 56bitri 182 . . . 4  |-  ( ( P `  3 )  e.  V  <->  E. d  e.  V  ( P `  3 )  =  d )
5853, 57sylib 120 . . 3  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  E. d  e.  V  ( P `  3 )  =  d )
5938, 49, 58jca32 303 . 2  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  ( ( E. a  e.  V  ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
60 r19.42v 2524 . . . . . 6  |-  ( E. d  e.  V  ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  E. d  e.  V  (
( P `  2
)  =  c  /\  ( P `  3 )  =  d ) ) )
61 r19.42v 2524 . . . . . . 7  |-  ( E. d  e.  V  ( ( P `  2
)  =  c  /\  ( P `  3 )  =  d )  <->  ( ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )
6261anbi2i 445 . . . . . 6  |-  ( ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  E. d  e.  V  ( ( P `  2 )  =  c  /\  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  (
( P `  2
)  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
6360, 62bitri 182 . . . . 5  |-  ( E. d  e.  V  ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  (
( P `  2
)  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
6463rexbii 2385 . . . 4  |-  ( E. c  e.  V  E. d  e.  V  (
( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  ( P `  3 )  =  d ) )  <->  E. c  e.  V  ( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  (
( P `  2
)  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
65642rexbii 2387 . . 3  |-  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  E. d  e.  V  (
( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  ( P `  3 )  =  d ) )  <->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  (
( P `  2
)  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
66 r19.42v 2524 . . . . 5  |-  ( E. c  e.  V  ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  E. c  e.  V  (
( P `  2
)  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
67 r19.41v 2523 . . . . . 6  |-  ( E. c  e.  V  ( ( P `  2
)  =  c  /\  E. d  e.  V  ( P `  3 )  =  d )  <->  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )
6867anbi2i 445 . . . . 5  |-  ( ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  E. c  e.  V  ( ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <->  ( (
( P `  0
)  =  a  /\  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
6966, 68bitri 182 . . . 4  |-  ( E. c  e.  V  ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
70692rexbii 2387 . . 3  |-  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  (
( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <->  E. a  e.  V  E. b  e.  V  ( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
71 r19.41v 2523 . . . . . 6  |-  ( E. b  e.  V  ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( E. b  e.  V  ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
72 r19.42v 2524 . . . . . . 7  |-  ( E. b  e.  V  ( ( P `  0
)  =  a  /\  ( P `  1 )  =  b )  <->  ( ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b ) )
7372anbi1i 446 . . . . . 6  |-  ( ( E. b  e.  V  ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
7471, 73bitri 182 . . . . 5  |-  ( E. b  e.  V  ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
7574rexbii 2385 . . . 4  |-  ( E. a  e.  V  E. b  e.  V  (
( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <->  E. a  e.  V  ( ( ( P `
 0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
76 r19.41v 2523 . . . 4  |-  ( E. a  e.  V  ( ( ( P ` 
0 )  =  a  /\  E. b  e.  V  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( E. a  e.  V  ( ( P `
 0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
77 r19.41v 2523 . . . . 5  |-  ( E. a  e.  V  ( ( P `  0
)  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  <->  ( E. a  e.  V  ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b ) )
7877anbi1i 446 . . . 4  |-  ( ( E. a  e.  V  ( ( P ` 
0 )  =  a  /\  E. b  e.  V  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( ( E. a  e.  V  ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
7975, 76, 783bitri 204 . . 3  |-  ( E. a  e.  V  E. b  e.  V  (
( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( ( E. a  e.  V  ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
8065, 70, 793bitri 204 . 2  |-  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  E. d  e.  V  (
( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  ( P `  3 )  =  d ) )  <-> 
( ( E. a  e.  V  ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
8159, 80sylibr 132 1  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  E. d  e.  V  ( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  (
( P `  2
)  =  c  /\  ( P `  3 )  =  d ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   E.wrex 2360    C_ wss 2999   class class class wbr 3845   -->wf 5011   ` cfv 5015  (class class class)co 5652   0cc0 7348   1c1 7349    <_ cle 7521   2c2 8471   3c3 8472   NN0cn0 8671   ZZcz 8748   ZZ>=cuz 9017   ...cfz 9422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-inn 8421  df-2 8479  df-3 8480  df-n0 8672  df-z 8749  df-uz 9018  df-fz 9423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator