ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4fvwrd4 Unicode version

Theorem 4fvwrd4 9948
Description: The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
Assertion
Ref Expression
4fvwrd4  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  E. d  e.  V  ( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  (
( P `  2
)  =  c  /\  ( P `  3 )  =  d ) ) )
Distinct variable groups:    P, a, b, c, d    V, a, b, c, d
Allowed substitution hints:    L( a, b, c, d)

Proof of Theorem 4fvwrd4
StepHypRef Expression
1 simpr 109 . . . . . 6  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  P : ( 0 ... L ) --> V )
2 0nn0 9016 . . . . . . . . 9  |-  0  e.  NN0
3 elnn0uz 9387 . . . . . . . . 9  |-  ( 0  e.  NN0  <->  0  e.  (
ZZ>= `  0 ) )
42, 3mpbi 144 . . . . . . . 8  |-  0  e.  ( ZZ>= `  0 )
5 3nn0 9019 . . . . . . . . . . 11  |-  3  e.  NN0
6 elnn0uz 9387 . . . . . . . . . . 11  |-  ( 3  e.  NN0  <->  3  e.  (
ZZ>= `  0 ) )
75, 6mpbi 144 . . . . . . . . . 10  |-  3  e.  ( ZZ>= `  0 )
8 uzss 9370 . . . . . . . . . 10  |-  ( 3  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
3 )  C_  ( ZZ>=
`  0 ) )
97, 8ax-mp 5 . . . . . . . . 9  |-  ( ZZ>= ` 
3 )  C_  ( ZZ>=
`  0 )
109sseli 3098 . . . . . . . 8  |-  ( L  e.  ( ZZ>= `  3
)  ->  L  e.  ( ZZ>= `  0 )
)
11 eluzfz 9832 . . . . . . . 8  |-  ( ( 0  e.  ( ZZ>= ` 
0 )  /\  L  e.  ( ZZ>= `  0 )
)  ->  0  e.  ( 0 ... L
) )
124, 10, 11sylancr 411 . . . . . . 7  |-  ( L  e.  ( ZZ>= `  3
)  ->  0  e.  ( 0 ... L
) )
1312adantr 274 . . . . . 6  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  0  e.  ( 0 ... L ) )
141, 13ffvelrnd 5564 . . . . 5  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  ( P ` 
0 )  e.  V
)
15 risset 2466 . . . . . 6  |-  ( ( P `  0 )  e.  V  <->  E. a  e.  V  a  =  ( P `  0 ) )
16 eqcom 2142 . . . . . . 7  |-  ( a  =  ( P ` 
0 )  <->  ( P `  0 )  =  a )
1716rexbii 2445 . . . . . 6  |-  ( E. a  e.  V  a  =  ( P ` 
0 )  <->  E. a  e.  V  ( P `  0 )  =  a )
1815, 17bitri 183 . . . . 5  |-  ( ( P `  0 )  e.  V  <->  E. a  e.  V  ( P `  0 )  =  a )
1914, 18sylib 121 . . . 4  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  E. a  e.  V  ( P `  0 )  =  a )
20 1eluzge0 9396 . . . . . . . 8  |-  1  e.  ( ZZ>= `  0 )
21 1z 9104 . . . . . . . . . . 11  |-  1  e.  ZZ
22 3z 9107 . . . . . . . . . . 11  |-  3  e.  ZZ
23 1le3 8955 . . . . . . . . . . 11  |-  1  <_  3
24 eluz2 9356 . . . . . . . . . . 11  |-  ( 3  e.  ( ZZ>= `  1
)  <->  ( 1  e.  ZZ  /\  3  e.  ZZ  /\  1  <_ 
3 ) )
2521, 22, 23, 24mpbir3an 1164 . . . . . . . . . 10  |-  3  e.  ( ZZ>= `  1 )
26 uzss 9370 . . . . . . . . . 10  |-  ( 3  e.  ( ZZ>= `  1
)  ->  ( ZZ>= ` 
3 )  C_  ( ZZ>=
`  1 ) )
2725, 26ax-mp 5 . . . . . . . . 9  |-  ( ZZ>= ` 
3 )  C_  ( ZZ>=
`  1 )
2827sseli 3098 . . . . . . . 8  |-  ( L  e.  ( ZZ>= `  3
)  ->  L  e.  ( ZZ>= `  1 )
)
29 eluzfz 9832 . . . . . . . 8  |-  ( ( 1  e.  ( ZZ>= ` 
0 )  /\  L  e.  ( ZZ>= `  1 )
)  ->  1  e.  ( 0 ... L
) )
3020, 28, 29sylancr 411 . . . . . . 7  |-  ( L  e.  ( ZZ>= `  3
)  ->  1  e.  ( 0 ... L
) )
3130adantr 274 . . . . . 6  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  1  e.  ( 0 ... L ) )
321, 31ffvelrnd 5564 . . . . 5  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  ( P ` 
1 )  e.  V
)
33 risset 2466 . . . . . 6  |-  ( ( P `  1 )  e.  V  <->  E. b  e.  V  b  =  ( P `  1 ) )
34 eqcom 2142 . . . . . . 7  |-  ( b  =  ( P ` 
1 )  <->  ( P `  1 )  =  b )
3534rexbii 2445 . . . . . 6  |-  ( E. b  e.  V  b  =  ( P ` 
1 )  <->  E. b  e.  V  ( P `  1 )  =  b )
3633, 35bitri 183 . . . . 5  |-  ( ( P `  1 )  e.  V  <->  E. b  e.  V  ( P `  1 )  =  b )
3732, 36sylib 121 . . . 4  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  E. b  e.  V  ( P `  1 )  =  b )
3819, 37jca 304 . . 3  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  ( E. a  e.  V  ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b ) )
39 2eluzge0 9397 . . . . . . 7  |-  2  e.  ( ZZ>= `  0 )
40 uzuzle23 9393 . . . . . . 7  |-  ( L  e.  ( ZZ>= `  3
)  ->  L  e.  ( ZZ>= `  2 )
)
41 eluzfz 9832 . . . . . . 7  |-  ( ( 2  e.  ( ZZ>= ` 
0 )  /\  L  e.  ( ZZ>= `  2 )
)  ->  2  e.  ( 0 ... L
) )
4239, 40, 41sylancr 411 . . . . . 6  |-  ( L  e.  ( ZZ>= `  3
)  ->  2  e.  ( 0 ... L
) )
4342adantr 274 . . . . 5  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  2  e.  ( 0 ... L ) )
441, 43ffvelrnd 5564 . . . 4  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  ( P ` 
2 )  e.  V
)
45 risset 2466 . . . . 5  |-  ( ( P `  2 )  e.  V  <->  E. c  e.  V  c  =  ( P `  2 ) )
46 eqcom 2142 . . . . . 6  |-  ( c  =  ( P ` 
2 )  <->  ( P `  2 )  =  c )
4746rexbii 2445 . . . . 5  |-  ( E. c  e.  V  c  =  ( P ` 
2 )  <->  E. c  e.  V  ( P `  2 )  =  c )
4845, 47bitri 183 . . . 4  |-  ( ( P `  2 )  e.  V  <->  E. c  e.  V  ( P `  2 )  =  c )
4944, 48sylib 121 . . 3  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  E. c  e.  V  ( P `  2 )  =  c )
50 eluzfz 9832 . . . . . . 7  |-  ( ( 3  e.  ( ZZ>= ` 
0 )  /\  L  e.  ( ZZ>= `  3 )
)  ->  3  e.  ( 0 ... L
) )
517, 50mpan 421 . . . . . 6  |-  ( L  e.  ( ZZ>= `  3
)  ->  3  e.  ( 0 ... L
) )
5251adantr 274 . . . . 5  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  3  e.  ( 0 ... L ) )
531, 52ffvelrnd 5564 . . . 4  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  ( P ` 
3 )  e.  V
)
54 risset 2466 . . . . 5  |-  ( ( P `  3 )  e.  V  <->  E. d  e.  V  d  =  ( P `  3 ) )
55 eqcom 2142 . . . . . 6  |-  ( d  =  ( P ` 
3 )  <->  ( P `  3 )  =  d )
5655rexbii 2445 . . . . 5  |-  ( E. d  e.  V  d  =  ( P ` 
3 )  <->  E. d  e.  V  ( P `  3 )  =  d )
5754, 56bitri 183 . . . 4  |-  ( ( P `  3 )  e.  V  <->  E. d  e.  V  ( P `  3 )  =  d )
5853, 57sylib 121 . . 3  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  E. d  e.  V  ( P `  3 )  =  d )
5938, 49, 58jca32 308 . 2  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  ( ( E. a  e.  V  ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
60 r19.42v 2591 . . . . . 6  |-  ( E. d  e.  V  ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  E. d  e.  V  (
( P `  2
)  =  c  /\  ( P `  3 )  =  d ) ) )
61 r19.42v 2591 . . . . . . 7  |-  ( E. d  e.  V  ( ( P `  2
)  =  c  /\  ( P `  3 )  =  d )  <->  ( ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )
6261anbi2i 453 . . . . . 6  |-  ( ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  E. d  e.  V  ( ( P `  2 )  =  c  /\  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  (
( P `  2
)  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
6360, 62bitri 183 . . . . 5  |-  ( E. d  e.  V  ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  (
( P `  2
)  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
6463rexbii 2445 . . . 4  |-  ( E. c  e.  V  E. d  e.  V  (
( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  ( P `  3 )  =  d ) )  <->  E. c  e.  V  ( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  (
( P `  2
)  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
65642rexbii 2447 . . 3  |-  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  E. d  e.  V  (
( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  ( P `  3 )  =  d ) )  <->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  (
( P `  2
)  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
66 r19.42v 2591 . . . . 5  |-  ( E. c  e.  V  ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  E. c  e.  V  (
( P `  2
)  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
67 r19.41v 2590 . . . . . 6  |-  ( E. c  e.  V  ( ( P `  2
)  =  c  /\  E. d  e.  V  ( P `  3 )  =  d )  <->  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )
6867anbi2i 453 . . . . 5  |-  ( ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  E. c  e.  V  ( ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <->  ( (
( P `  0
)  =  a  /\  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
6966, 68bitri 183 . . . 4  |-  ( E. c  e.  V  ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
70692rexbii 2447 . . 3  |-  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  (
( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <->  E. a  e.  V  E. b  e.  V  ( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
71 r19.41v 2590 . . . . . 6  |-  ( E. b  e.  V  ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( E. b  e.  V  ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
72 r19.42v 2591 . . . . . . 7  |-  ( E. b  e.  V  ( ( P `  0
)  =  a  /\  ( P `  1 )  =  b )  <->  ( ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b ) )
7372anbi1i 454 . . . . . 6  |-  ( ( E. b  e.  V  ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
7471, 73bitri 183 . . . . 5  |-  ( E. b  e.  V  ( ( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( ( ( P `
 0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
7574rexbii 2445 . . . 4  |-  ( E. a  e.  V  E. b  e.  V  (
( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <->  E. a  e.  V  ( ( ( P `
 0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
76 r19.41v 2590 . . . 4  |-  ( E. a  e.  V  ( ( ( P ` 
0 )  =  a  /\  E. b  e.  V  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( E. a  e.  V  ( ( P `
 0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
77 r19.41v 2590 . . . . 5  |-  ( E. a  e.  V  ( ( P `  0
)  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  <->  ( E. a  e.  V  ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b ) )
7877anbi1i 454 . . . 4  |-  ( ( E. a  e.  V  ( ( P ` 
0 )  =  a  /\  E. b  e.  V  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( ( E. a  e.  V  ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
7975, 76, 783bitri 205 . . 3  |-  ( E. a  e.  V  E. b  e.  V  (
( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) )  <-> 
( ( E. a  e.  V  ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
8065, 70, 793bitri 205 . 2  |-  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  E. d  e.  V  (
( ( P ` 
0 )  =  a  /\  ( P ` 
1 )  =  b )  /\  ( ( P `  2 )  =  c  /\  ( P `  3 )  =  d ) )  <-> 
( ( E. a  e.  V  ( P `  0 )  =  a  /\  E. b  e.  V  ( P `  1 )  =  b )  /\  ( E. c  e.  V  ( P `  2 )  =  c  /\  E. d  e.  V  ( P `  3 )  =  d ) ) )
8159, 80sylibr 133 1  |-  ( ( L  e.  ( ZZ>= ` 
3 )  /\  P : ( 0 ... L ) --> V )  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  E. d  e.  V  ( ( ( P `
 0 )  =  a  /\  ( P `
 1 )  =  b )  /\  (
( P `  2
)  =  c  /\  ( P `  3 )  =  d ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   E.wrex 2418    C_ wss 3076   class class class wbr 3937   -->wf 5127   ` cfv 5131  (class class class)co 5782   0cc0 7644   1c1 7645    <_ cle 7825   2c2 8795   3c3 8796   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-2 8803  df-3 8804  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator