| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4fvwrd4 | Unicode version | ||
| Description: The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.) |
| Ref | Expression |
|---|---|
| 4fvwrd4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | 0nn0 9312 |
. . . . . . . . 9
| |
| 3 | elnn0uz 9688 |
. . . . . . . . 9
| |
| 4 | 2, 3 | mpbi 145 |
. . . . . . . 8
|
| 5 | 3nn0 9315 |
. . . . . . . . . . 11
| |
| 6 | elnn0uz 9688 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | mpbi 145 |
. . . . . . . . . 10
|
| 8 | uzss 9671 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . . 9
|
| 10 | 9 | sseli 3189 |
. . . . . . . 8
|
| 11 | eluzfz 10144 |
. . . . . . . 8
| |
| 12 | 4, 10, 11 | sylancr 414 |
. . . . . . 7
|
| 13 | 12 | adantr 276 |
. . . . . 6
|
| 14 | 1, 13 | ffvelcdmd 5718 |
. . . . 5
|
| 15 | risset 2534 |
. . . . . 6
| |
| 16 | eqcom 2207 |
. . . . . . 7
| |
| 17 | 16 | rexbii 2513 |
. . . . . 6
|
| 18 | 15, 17 | bitri 184 |
. . . . 5
|
| 19 | 14, 18 | sylib 122 |
. . . 4
|
| 20 | 1eluzge0 9697 |
. . . . . . . 8
| |
| 21 | 1z 9400 |
. . . . . . . . . . 11
| |
| 22 | 3z 9403 |
. . . . . . . . . . 11
| |
| 23 | 1le3 9250 |
. . . . . . . . . . 11
| |
| 24 | eluz2 9656 |
. . . . . . . . . . 11
| |
| 25 | 21, 22, 23, 24 | mpbir3an 1182 |
. . . . . . . . . 10
|
| 26 | uzss 9671 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . . . 9
|
| 28 | 27 | sseli 3189 |
. . . . . . . 8
|
| 29 | eluzfz 10144 |
. . . . . . . 8
| |
| 30 | 20, 28, 29 | sylancr 414 |
. . . . . . 7
|
| 31 | 30 | adantr 276 |
. . . . . 6
|
| 32 | 1, 31 | ffvelcdmd 5718 |
. . . . 5
|
| 33 | risset 2534 |
. . . . . 6
| |
| 34 | eqcom 2207 |
. . . . . . 7
| |
| 35 | 34 | rexbii 2513 |
. . . . . 6
|
| 36 | 33, 35 | bitri 184 |
. . . . 5
|
| 37 | 32, 36 | sylib 122 |
. . . 4
|
| 38 | 19, 37 | jca 306 |
. . 3
|
| 39 | 2eluzge0 9698 |
. . . . . . 7
| |
| 40 | uzuzle23 9694 |
. . . . . . 7
| |
| 41 | eluzfz 10144 |
. . . . . . 7
| |
| 42 | 39, 40, 41 | sylancr 414 |
. . . . . 6
|
| 43 | 42 | adantr 276 |
. . . . 5
|
| 44 | 1, 43 | ffvelcdmd 5718 |
. . . 4
|
| 45 | risset 2534 |
. . . . 5
| |
| 46 | eqcom 2207 |
. . . . . 6
| |
| 47 | 46 | rexbii 2513 |
. . . . 5
|
| 48 | 45, 47 | bitri 184 |
. . . 4
|
| 49 | 44, 48 | sylib 122 |
. . 3
|
| 50 | eluzfz 10144 |
. . . . . . 7
| |
| 51 | 7, 50 | mpan 424 |
. . . . . 6
|
| 52 | 51 | adantr 276 |
. . . . 5
|
| 53 | 1, 52 | ffvelcdmd 5718 |
. . . 4
|
| 54 | risset 2534 |
. . . . 5
| |
| 55 | eqcom 2207 |
. . . . . 6
| |
| 56 | 55 | rexbii 2513 |
. . . . 5
|
| 57 | 54, 56 | bitri 184 |
. . . 4
|
| 58 | 53, 57 | sylib 122 |
. . 3
|
| 59 | 38, 49, 58 | jca32 310 |
. 2
|
| 60 | r19.42v 2663 |
. . . . . 6
| |
| 61 | r19.42v 2663 |
. . . . . . 7
| |
| 62 | 61 | anbi2i 457 |
. . . . . 6
|
| 63 | 60, 62 | bitri 184 |
. . . . 5
|
| 64 | 63 | rexbii 2513 |
. . . 4
|
| 65 | 64 | 2rexbii 2515 |
. . 3
|
| 66 | r19.42v 2663 |
. . . . 5
| |
| 67 | r19.41v 2662 |
. . . . . 6
| |
| 68 | 67 | anbi2i 457 |
. . . . 5
|
| 69 | 66, 68 | bitri 184 |
. . . 4
|
| 70 | 69 | 2rexbii 2515 |
. . 3
|
| 71 | r19.41v 2662 |
. . . . . 6
| |
| 72 | r19.42v 2663 |
. . . . . . 7
| |
| 73 | 72 | anbi1i 458 |
. . . . . 6
|
| 74 | 71, 73 | bitri 184 |
. . . . 5
|
| 75 | 74 | rexbii 2513 |
. . . 4
|
| 76 | r19.41v 2662 |
. . . 4
| |
| 77 | r19.41v 2662 |
. . . . 5
| |
| 78 | 77 | anbi1i 458 |
. . . 4
|
| 79 | 75, 76, 78 | 3bitri 206 |
. . 3
|
| 80 | 65, 70, 79 | 3bitri 206 |
. 2
|
| 81 | 59, 80 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-2 9097 df-3 9098 df-n0 9298 df-z 9375 df-uz 9651 df-fz 10133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |