![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexbii | Unicode version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
ralbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rexbii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rexbidv 2382 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | mptru 1299 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-4 1446 ax-17 1465 ax-ial 1473 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-rex 2366 |
This theorem is referenced by: 2rexbii 2388 r19.29r 2508 r19.42v 2525 rexcom13 2533 rexrot4 2534 3reeanv 2538 cbvrex2v 2600 rexcom4 2643 rexcom4a 2644 rexcom4b 2645 ceqsrex2v 2750 reu7 2811 0el 3309 iuncom 3742 iuncom4 3743 iuniin 3746 dfiunv2 3772 iunab 3782 iunin2 3799 iundif2ss 3801 iunun 3814 iunxiun 3816 iunpwss 3826 inuni 3997 iunopab 4117 sucel 4246 iunpw 4315 xpiundi 4509 xpiundir 4510 reliin 4572 rexxpf 4596 iunxpf 4597 cnvuni 4635 dmiun 4658 dfima3 4790 rniun 4855 dminxp 4888 imaco 4949 coiun 4953 isarep1 5113 rexrn 5450 ralrn 5451 elrnrexdmb 5453 fnasrn 5489 fnasrng 5491 foima2 5544 rexima 5548 ralima 5549 abrexco 5552 imaiun 5553 fliftcnv 5588 abrexex2g 5905 abrexex2 5909 tfr1onlemaccex 6127 tfrcllemaccex 6140 tfrcldm 6142 qsid 6371 eroveu 6397 ixp0 6502 infmoti 6777 eldju 6813 genpdflem 7127 genpassl 7144 genpassu 7145 nqprm 7162 nqprrnd 7163 ltnqpr 7213 ltnqpri 7214 ltexprlemm 7220 ltexprlemopl 7221 ltexprlemopu 7223 caucvgprprlemaddq 7328 caucvgprprlem1 7329 caucvgsrlemgt1 7401 elreal 7427 axcaucvglemres 7495 dfinfre 8478 suprzclex 8905 supinfneg 9144 infsupneg 9145 ublbneg 9159 4fvwrd4 9612 caucvgre 10475 rexanuz 10482 rexfiuz 10483 resqrexlemglsq 10516 resqrexlemsqa 10518 resqrexlemex 10519 rersqreu 10522 clim0 10734 cbvsum 10810 fisum 10839 mertenslem2 10991 divalgb 11264 infssuzex 11284 bezoutlemmain 11326 bezoutlemex 11329 tgval2 11812 ntreq0 11893 |
Copyright terms: Public domain | W3C validator |