Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3reeanv | Unicode version |
Description: Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.) |
Ref | Expression |
---|---|
3reeanv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 2626 | . . 3 | |
2 | reeanv 2639 | . . . 4 | |
3 | 2 | anbi1i 455 | . . 3 |
4 | 1, 3 | bitri 183 | . 2 |
5 | df-3an 975 | . . . . 5 | |
6 | 5 | 2rexbii 2479 | . . . 4 |
7 | reeanv 2639 | . . . 4 | |
8 | 6, 7 | bitri 183 | . . 3 |
9 | 8 | rexbii 2477 | . 2 |
10 | df-3an 975 | . 2 | |
11 | 4, 9, 10 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 973 wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |