ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3reeanv Unicode version

Theorem 3reeanv 2636
Description: Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.)
Assertion
Ref Expression
3reeanv  |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  ( ph  /\  ps  /\  ch ) 
<->  ( E. x  e.  A  ph  /\  E. y  e.  B  ps  /\ 
E. z  e.  C  ch ) )
Distinct variable groups:    ph, y, z    ps, x, z    ch, x, y    y, A    x, B, z    x, C, y
Allowed substitution hints:    ph( x)    ps( y)    ch( z)    A( x, z)    B( y)    C( z)

Proof of Theorem 3reeanv
StepHypRef Expression
1 r19.41v 2622 . . 3  |-  ( E. x  e.  A  ( E. y  e.  B  ( ph  /\  ps )  /\  E. z  e.  C  ch )  <->  ( E. x  e.  A  E. y  e.  B  ( ph  /\ 
ps )  /\  E. z  e.  C  ch ) )
2 reeanv 2635 . . . 4  |-  ( E. x  e.  A  E. y  e.  B  ( ph  /\  ps )  <->  ( E. x  e.  A  ph  /\  E. y  e.  B  ps ) )
32anbi1i 454 . . 3  |-  ( ( E. x  e.  A  E. y  e.  B  ( ph  /\  ps )  /\  E. z  e.  C  ch )  <->  ( ( E. x  e.  A  ph  /\ 
E. y  e.  B  ps )  /\  E. z  e.  C  ch )
)
41, 3bitri 183 . 2  |-  ( E. x  e.  A  ( E. y  e.  B  ( ph  /\  ps )  /\  E. z  e.  C  ch )  <->  ( ( E. x  e.  A  ph  /\ 
E. y  e.  B  ps )  /\  E. z  e.  C  ch )
)
5 df-3an 970 . . . . 5  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
652rexbii 2475 . . . 4  |-  ( E. y  e.  B  E. z  e.  C  ( ph  /\  ps  /\  ch ) 
<->  E. y  e.  B  E. z  e.  C  ( ( ph  /\  ps )  /\  ch )
)
7 reeanv 2635 . . . 4  |-  ( E. y  e.  B  E. z  e.  C  (
( ph  /\  ps )  /\  ch )  <->  ( E. y  e.  B  ( ph  /\  ps )  /\  E. z  e.  C  ch ) )
86, 7bitri 183 . . 3  |-  ( E. y  e.  B  E. z  e.  C  ( ph  /\  ps  /\  ch ) 
<->  ( E. y  e.  B  ( ph  /\  ps )  /\  E. z  e.  C  ch )
)
98rexbii 2473 . 2  |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  ( ph  /\  ps  /\  ch ) 
<->  E. x  e.  A  ( E. y  e.  B  ( ph  /\  ps )  /\  E. z  e.  C  ch ) )
10 df-3an 970 . 2  |-  ( ( E. x  e.  A  ph 
/\  E. y  e.  B  ps  /\  E. z  e.  C  ch )  <->  ( ( E. x  e.  A  ph 
/\  E. y  e.  B  ps )  /\  E. z  e.  C  ch )
)
114, 9, 103bitr4i 211 1  |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  ( ph  /\  ps  /\  ch ) 
<->  ( E. x  e.  A  ph  /\  E. y  e.  B  ps  /\ 
E. z  e.  C  ch ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator