| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralbii2 | Unicode version | ||
| Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.) |
| Ref | Expression |
|---|---|
| ralbii2.1 |
|
| Ref | Expression |
|---|---|
| ralbii2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbii2.1 |
. . 3
| |
| 2 | 1 | albii 1516 |
. 2
|
| 3 | df-ral 2513 |
. 2
| |
| 4 | df-ral 2513 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-ral 2513 |
| This theorem is referenced by: raleqbii 2542 ralbiia 2544 ralrab 2964 raldifb 3344 raluz2 9770 ralrp 9867 isprm4 12636 |
| Copyright terms: Public domain | W3C validator |