Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralbii2 | Unicode version |
Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.) |
Ref | Expression |
---|---|
ralbii2.1 |
Ref | Expression |
---|---|
ralbii2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii2.1 | . . 3 | |
2 | 1 | albii 1450 | . 2 |
3 | df-ral 2440 | . 2 | |
4 | df-ral 2440 | . 2 | |
5 | 2, 3, 4 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1333 wcel 2128 wral 2435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 |
This theorem depends on definitions: df-bi 116 df-ral 2440 |
This theorem is referenced by: raleqbii 2469 ralbiia 2471 ralrab 2873 raldifb 3247 raluz2 9490 ralrp 9582 isprm4 11995 |
Copyright terms: Public domain | W3C validator |