ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtrip Unicode version

Theorem pythagtrip 12814
Description: Parameterize the Pythagorean triples. If  A,  B, and  C are naturals, then they obey the Pythagorean triple formula iff they are parameterized by three naturals. This proof follows the Isabelle proof at http://afp.sourceforge.net/entries/Fermat3_4.shtml. This is Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014.)
Assertion
Ref Expression
pythagtrip  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
Distinct variable groups:    A, k, m, n    B, k, m, n    C, k, m, n

Proof of Theorem pythagtrip
StepHypRef Expression
1 divgcdodd 12673 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  /  ( A  gcd  B ) ) ) )
213adant3 1041 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  / 
( A  gcd  B
) ) ) )
32adantr 276 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  /  ( A  gcd  B ) ) ) )
4 pythagtriplem19 12813 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
543expia 1229 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
6 simp12 1052 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  ->  B  e.  NN )
7 simp11 1051 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  ->  A  e.  NN )
8 simp13 1053 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  ->  C  e.  NN )
9 nnsqcl 10839 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  NN )
109nncnd 9132 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  CC )
11103ad2ant1 1042 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  CC )
12 nnsqcl 10839 . . . . . . . . . . . . . 14  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  NN )
1312nncnd 9132 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  CC )
14133ad2ant2 1043 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  CC )
1511, 14addcomd 8305 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( ( B ^ 2 )  +  ( A ^ 2 ) ) )
1615eqeq1d 2238 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  <->  ( ( B ^ 2 )  +  ( A ^ 2 ) )  =  ( C ^ 2 ) ) )
1716biimpa 296 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( B ^ 2 )  +  ( A ^ 2 ) )  =  ( C ^ 2 ) )
18173adant3 1041 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  -> 
( ( B ^
2 )  +  ( A ^ 2 ) )  =  ( C ^ 2 ) )
19 nnz 9473 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  A  e.  ZZ )
20193ad2ant1 1042 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  ZZ )
21 nnz 9473 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  B  e.  ZZ )
22213ad2ant2 1043 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  ZZ )
2322adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  B  e.  ZZ )
24 gcdcom 12502 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
2520, 23, 24syl2an2r 597 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( A  gcd  B )  =  ( B  gcd  A ) )
2625oveq2d 6023 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( B  / 
( A  gcd  B
) )  =  ( B  /  ( B  gcd  A ) ) )
2726breq2d 4095 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( 2  ||  ( B  /  ( A  gcd  B ) )  <->  2  ||  ( B  /  ( B  gcd  A ) ) ) )
2827notbid 671 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( -.  2  ||  ( B  /  ( A  gcd  B ) )  <->  -.  2  ||  ( B  /  ( B  gcd  A ) ) ) )
2928biimp3a 1379 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  ->  -.  2  ||  ( B  /  ( B  gcd  A ) ) )
30 pythagtriplem19 12813 . . . . . . . 8  |-  ( ( ( B  e.  NN  /\  A  e.  NN  /\  C  e.  NN )  /\  ( ( B ^
2 )  +  ( A ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( B  gcd  A ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
316, 7, 8, 18, 29, 30syl311anc 1285 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
32313expia 1229 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( -.  2  ||  ( B  /  ( A  gcd  B ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
335, 32orim12d 791 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  / 
( A  gcd  B
) ) )  -> 
( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) ) )
343, 33mpd 13 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
35 simplll 533 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  A  e.  NN )
36 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  B  e.  NN )
37 nnz 9473 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  ZZ )
3837adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  k  e.  ZZ )
39 simplrr 536 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  m  e.  NN )
4039nnzd 9576 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  m  e.  ZZ )
41 zsqcl 10840 . . . . . . . . . . . . . 14  |-  ( m  e.  ZZ  ->  (
m ^ 2 )  e.  ZZ )
4240, 41syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  ( m ^ 2 )  e.  ZZ )
43 simplrl 535 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  n  e.  NN )
4443nnzd 9576 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  n  e.  ZZ )
45 zsqcl 10840 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
n ^ 2 )  e.  ZZ )
4644, 45syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  ( n ^ 2 )  e.  ZZ )
4742, 46zsubcld 9582 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  ( ( m ^ 2 )  -  ( n ^
2 ) )  e.  ZZ )
4838, 47zmulcld 9583 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  e.  ZZ )
49 2z 9482 . . . . . . . . . . . . . 14  |-  2  e.  ZZ
5049a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  2  e.  ZZ )
5140, 44zmulcld 9583 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  ( m  x.  n )  e.  ZZ )
5250, 51zmulcld 9583 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  ( 2  x.  ( m  x.  n ) )  e.  ZZ )
5338, 52zmulcld 9583 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  ( k  x.  ( 2  x.  ( m  x.  n
) ) )  e.  ZZ )
54 preq12bg 3851 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  e.  ZZ  /\  ( k  x.  ( 2  x.  ( m  x.  n
) ) )  e.  ZZ ) )  -> 
( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  <-> 
( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) ) ) )
5535, 36, 48, 53, 54syl22anc 1272 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  ( { A ,  B }  =  { ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  <->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) ) ) )
5655anbi1d 465 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  (
n  e.  NN  /\  m  e.  NN )
)  /\  k  e.  NN )  ->  ( ( { A ,  B }  =  { (
k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ,  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) }  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( (
( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
5756rexbidva 2527 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( n  e.  NN  /\  m  e.  NN ) )  -> 
( E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  E. k  e.  NN  ( ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
58572rexbidva 2553 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  (
( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
59 andir 824 . . . . . . . . . . 11  |-  ( ( ( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
60 df-3an 1004 . . . . . . . . . . . 12  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
61 df-3an 1004 . . . . . . . . . . . 12  |-  ( ( A  =  ( k  x.  ( 2  x.  ( m  x.  n
) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
6260, 61orbi12i 769 . . . . . . . . . . 11  |-  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  <-> 
( ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
63 3ancoma 1009 . . . . . . . . . . . 12  |-  ( ( A  =  ( k  x.  ( 2  x.  ( m  x.  n
) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
6463orbi2i 767 . . . . . . . . . . 11  |-  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  <-> 
( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
6559, 62, 643bitr2i 208 . . . . . . . . . 10  |-  ( ( ( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
6665rexbii 2537 . . . . . . . . 9  |-  ( E. k  e.  NN  (
( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  E. k  e.  NN  ( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
67662rexbii 2539 . . . . . . . 8  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
68 r19.43 2689 . . . . . . . . . 10  |-  ( E. k  e.  NN  (
( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  <-> 
( E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. k  e.  NN  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
69682rexbii 2539 . . . . . . . . 9  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  ( E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. k  e.  NN  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
70 r19.43 2689 . . . . . . . . . . 11  |-  ( E. m  e.  NN  ( E. k  e.  NN  ( A  =  (
k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )  <->  ( E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
7170rexbii 2537 . . . . . . . . . 10  |-  ( E. n  e.  NN  E. m  e.  NN  ( E. k  e.  NN  ( A  =  (
k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )  <->  E. n  e.  NN  ( E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
72 r19.43 2689 . . . . . . . . . 10  |-  ( E. n  e.  NN  ( E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/ 
E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  <-> 
( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
7371, 72bitri 184 . . . . . . . . 9  |-  ( E. n  e.  NN  E. m  e.  NN  ( E. k  e.  NN  ( A  =  (
k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
7469, 73bitri 184 . . . . . . . 8  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
7567, 74bitri 184 . . . . . . 7  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
7658, 75bitrdi 196 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) ) )
77763adant3 1041 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  { ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) ) )
7877adantr 276 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) ) )
7934, 78mpbird 167 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  { ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
8079ex 115 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  { ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
81 pythagtriplem2 12797 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) ) )
82813adant3 1041 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  { ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) ) )
8380, 82impbid 129 1  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   {cpr 3667   class class class wbr 4083  (class class class)co 6007   CCcc 8005    + caddc 8010    x. cmul 8012    - cmin 8325    / cdiv 8827   NNcn 9118   2c2 9169   ZZcz 9454   ^cexp 10768    || cdvds 12306    gcd cgcd 12482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-gcd 12483  df-prm 12638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator