| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adantr2 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 |
|
| Ref | Expression |
|---|---|
| 3adantr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 997 |
. 2
| |
| 2 | 3adantr.1 |
. 2
| |
| 3 | 1, 2 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant3r2 1215 po3nr 4346 isosolem 5874 caovlem2d 6120 imasrng 13588 imasring 13696 |
| Copyright terms: Public domain | W3C validator |