ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adantr2 Unicode version

Theorem 3adantr2 1142
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
3adantr2  |-  ( (
ph  /\  ( ps  /\ 
ta  /\  ch )
)  ->  th )

Proof of Theorem 3adantr2
StepHypRef Expression
1 3simpb 980 . 2  |-  ( ( ps  /\  ta  /\  ch )  ->  ( ps 
/\  ch ) )
2 3adantr.1 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
31, 2sylan2 284 1  |-  ( (
ph  /\  ( ps  /\ 
ta  /\  ch )
)  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 965
This theorem is referenced by:  3adant3r2  1195  po3nr  4272  isosolem  5776  caovlem2d  6015
  Copyright terms: Public domain W3C validator