Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isosolem | Unicode version |
Description: Lemma for isoso 5804. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
isosolem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isopolem 5801 | . . 3 | |
2 | df-3an 975 | . . . . . . 7 | |
3 | isof1o 5786 | . . . . . . . . . . 11 | |
4 | f1of 5442 | . . . . . . . . . . 11 | |
5 | ffvelrn 5629 | . . . . . . . . . . . . 13 | |
6 | 5 | ex 114 | . . . . . . . . . . . 12 |
7 | ffvelrn 5629 | . . . . . . . . . . . . 13 | |
8 | 7 | ex 114 | . . . . . . . . . . . 12 |
9 | ffvelrn 5629 | . . . . . . . . . . . . 13 | |
10 | 9 | ex 114 | . . . . . . . . . . . 12 |
11 | 6, 8, 10 | 3anim123d 1314 | . . . . . . . . . . 11 |
12 | 3, 4, 11 | 3syl 17 | . . . . . . . . . 10 |
13 | 12 | imp 123 | . . . . . . . . 9 |
14 | breq1 3992 | . . . . . . . . . . 11 | |
15 | breq1 3992 | . . . . . . . . . . . 12 | |
16 | 15 | orbi1d 786 | . . . . . . . . . . 11 |
17 | 14, 16 | imbi12d 233 | . . . . . . . . . 10 |
18 | breq2 3993 | . . . . . . . . . . 11 | |
19 | breq2 3993 | . . . . . . . . . . . 12 | |
20 | 19 | orbi2d 785 | . . . . . . . . . . 11 |
21 | 18, 20 | imbi12d 233 | . . . . . . . . . 10 |
22 | breq2 3993 | . . . . . . . . . . . 12 | |
23 | breq1 3992 | . . . . . . . . . . . 12 | |
24 | 22, 23 | orbi12d 788 | . . . . . . . . . . 11 |
25 | 24 | imbi2d 229 | . . . . . . . . . 10 |
26 | 17, 21, 25 | rspc3v 2850 | . . . . . . . . 9 |
27 | 13, 26 | syl 14 | . . . . . . . 8 |
28 | isorel 5787 | . . . . . . . . . 10 | |
29 | 28 | 3adantr3 1153 | . . . . . . . . 9 |
30 | isorel 5787 | . . . . . . . . . . 11 | |
31 | 30 | 3adantr2 1152 | . . . . . . . . . 10 |
32 | isorel 5787 | . . . . . . . . . . . 12 | |
33 | 32 | ancom2s 561 | . . . . . . . . . . 11 |
34 | 33 | 3adantr1 1151 | . . . . . . . . . 10 |
35 | 31, 34 | orbi12d 788 | . . . . . . . . 9 |
36 | 29, 35 | imbi12d 233 | . . . . . . . 8 |
37 | 27, 36 | sylibrd 168 | . . . . . . 7 |
38 | 2, 37 | sylan2br 286 | . . . . . 6 |
39 | 38 | anassrs 398 | . . . . 5 |
40 | 39 | ralrimdva 2550 | . . . 4 |
41 | 40 | ralrimdvva 2555 | . . 3 |
42 | 1, 41 | anim12d 333 | . 2 |
43 | df-iso 4282 | . 2 | |
44 | df-iso 4282 | . 2 | |
45 | 42, 43, 44 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 wral 2448 class class class wbr 3989 wpo 4279 wor 4280 wf 5194 wf1o 5197 cfv 5198 wiso 5199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-f1o 5205 df-fv 5206 df-isom 5207 |
This theorem is referenced by: isoso 5804 |
Copyright terms: Public domain | W3C validator |