| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isosolem | Unicode version | ||
| Description: Lemma for isoso 5872. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| isosolem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isopolem 5869 |
. . 3
| |
| 2 | df-3an 982 |
. . . . . . 7
| |
| 3 | isof1o 5854 |
. . . . . . . . . . 11
| |
| 4 | f1of 5504 |
. . . . . . . . . . 11
| |
| 5 | ffvelcdm 5695 |
. . . . . . . . . . . . 13
| |
| 6 | 5 | ex 115 |
. . . . . . . . . . . 12
|
| 7 | ffvelcdm 5695 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | ex 115 |
. . . . . . . . . . . 12
|
| 9 | ffvelcdm 5695 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | ex 115 |
. . . . . . . . . . . 12
|
| 11 | 6, 8, 10 | 3anim123d 1330 |
. . . . . . . . . . 11
|
| 12 | 3, 4, 11 | 3syl 17 |
. . . . . . . . . 10
|
| 13 | 12 | imp 124 |
. . . . . . . . 9
|
| 14 | breq1 4036 |
. . . . . . . . . . 11
| |
| 15 | breq1 4036 |
. . . . . . . . . . . 12
| |
| 16 | 15 | orbi1d 792 |
. . . . . . . . . . 11
|
| 17 | 14, 16 | imbi12d 234 |
. . . . . . . . . 10
|
| 18 | breq2 4037 |
. . . . . . . . . . 11
| |
| 19 | breq2 4037 |
. . . . . . . . . . . 12
| |
| 20 | 19 | orbi2d 791 |
. . . . . . . . . . 11
|
| 21 | 18, 20 | imbi12d 234 |
. . . . . . . . . 10
|
| 22 | breq2 4037 |
. . . . . . . . . . . 12
| |
| 23 | breq1 4036 |
. . . . . . . . . . . 12
| |
| 24 | 22, 23 | orbi12d 794 |
. . . . . . . . . . 11
|
| 25 | 24 | imbi2d 230 |
. . . . . . . . . 10
|
| 26 | 17, 21, 25 | rspc3v 2884 |
. . . . . . . . 9
|
| 27 | 13, 26 | syl 14 |
. . . . . . . 8
|
| 28 | isorel 5855 |
. . . . . . . . . 10
| |
| 29 | 28 | 3adantr3 1160 |
. . . . . . . . 9
|
| 30 | isorel 5855 |
. . . . . . . . . . 11
| |
| 31 | 30 | 3adantr2 1159 |
. . . . . . . . . 10
|
| 32 | isorel 5855 |
. . . . . . . . . . . 12
| |
| 33 | 32 | ancom2s 566 |
. . . . . . . . . . 11
|
| 34 | 33 | 3adantr1 1158 |
. . . . . . . . . 10
|
| 35 | 31, 34 | orbi12d 794 |
. . . . . . . . 9
|
| 36 | 29, 35 | imbi12d 234 |
. . . . . . . 8
|
| 37 | 27, 36 | sylibrd 169 |
. . . . . . 7
|
| 38 | 2, 37 | sylan2br 288 |
. . . . . 6
|
| 39 | 38 | anassrs 400 |
. . . . 5
|
| 40 | 39 | ralrimdva 2577 |
. . . 4
|
| 41 | 40 | ralrimdvva 2582 |
. . 3
|
| 42 | 1, 41 | anim12d 335 |
. 2
|
| 43 | df-iso 4332 |
. 2
| |
| 44 | df-iso 4332 |
. 2
| |
| 45 | 42, 43, 44 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-f1o 5265 df-fv 5266 df-isom 5267 |
| This theorem is referenced by: isoso 5872 |
| Copyright terms: Public domain | W3C validator |