Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isosolem | Unicode version |
Description: Lemma for isoso 5793. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
isosolem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isopolem 5790 | . . 3 | |
2 | df-3an 970 | . . . . . . 7 | |
3 | isof1o 5775 | . . . . . . . . . . 11 | |
4 | f1of 5432 | . . . . . . . . . . 11 | |
5 | ffvelrn 5618 | . . . . . . . . . . . . 13 | |
6 | 5 | ex 114 | . . . . . . . . . . . 12 |
7 | ffvelrn 5618 | . . . . . . . . . . . . 13 | |
8 | 7 | ex 114 | . . . . . . . . . . . 12 |
9 | ffvelrn 5618 | . . . . . . . . . . . . 13 | |
10 | 9 | ex 114 | . . . . . . . . . . . 12 |
11 | 6, 8, 10 | 3anim123d 1309 | . . . . . . . . . . 11 |
12 | 3, 4, 11 | 3syl 17 | . . . . . . . . . 10 |
13 | 12 | imp 123 | . . . . . . . . 9 |
14 | breq1 3985 | . . . . . . . . . . 11 | |
15 | breq1 3985 | . . . . . . . . . . . 12 | |
16 | 15 | orbi1d 781 | . . . . . . . . . . 11 |
17 | 14, 16 | imbi12d 233 | . . . . . . . . . 10 |
18 | breq2 3986 | . . . . . . . . . . 11 | |
19 | breq2 3986 | . . . . . . . . . . . 12 | |
20 | 19 | orbi2d 780 | . . . . . . . . . . 11 |
21 | 18, 20 | imbi12d 233 | . . . . . . . . . 10 |
22 | breq2 3986 | . . . . . . . . . . . 12 | |
23 | breq1 3985 | . . . . . . . . . . . 12 | |
24 | 22, 23 | orbi12d 783 | . . . . . . . . . . 11 |
25 | 24 | imbi2d 229 | . . . . . . . . . 10 |
26 | 17, 21, 25 | rspc3v 2846 | . . . . . . . . 9 |
27 | 13, 26 | syl 14 | . . . . . . . 8 |
28 | isorel 5776 | . . . . . . . . . 10 | |
29 | 28 | 3adantr3 1148 | . . . . . . . . 9 |
30 | isorel 5776 | . . . . . . . . . . 11 | |
31 | 30 | 3adantr2 1147 | . . . . . . . . . 10 |
32 | isorel 5776 | . . . . . . . . . . . 12 | |
33 | 32 | ancom2s 556 | . . . . . . . . . . 11 |
34 | 33 | 3adantr1 1146 | . . . . . . . . . 10 |
35 | 31, 34 | orbi12d 783 | . . . . . . . . 9 |
36 | 29, 35 | imbi12d 233 | . . . . . . . 8 |
37 | 27, 36 | sylibrd 168 | . . . . . . 7 |
38 | 2, 37 | sylan2br 286 | . . . . . 6 |
39 | 38 | anassrs 398 | . . . . 5 |
40 | 39 | ralrimdva 2546 | . . . 4 |
41 | 40 | ralrimdvva 2551 | . . 3 |
42 | 1, 41 | anim12d 333 | . 2 |
43 | df-iso 4275 | . 2 | |
44 | df-iso 4275 | . 2 | |
45 | 42, 43, 44 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wcel 2136 wral 2444 class class class wbr 3982 wpo 4272 wor 4273 wf 5184 wf1o 5187 cfv 5188 wiso 5189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-f1o 5195 df-fv 5196 df-isom 5197 |
This theorem is referenced by: isoso 5793 |
Copyright terms: Public domain | W3C validator |