ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isosolem Unicode version

Theorem isosolem 5585
Description: Lemma for isoso 5586. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
isosolem  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Or  B  ->  R  Or  A
) )

Proof of Theorem isosolem
Dummy variables  a  b  c  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isopolem 5583 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Po  B  ->  R  Po  A
) )
2 df-3an 926 . . . . . . 7  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  <->  ( ( a  e.  A  /\  b  e.  A
)  /\  c  e.  A ) )
3 isof1o 5568 . . . . . . . . . . 11  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
4 f1of 5237 . . . . . . . . . . 11  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
5 ffvelrn 5416 . . . . . . . . . . . . 13  |-  ( ( H : A --> B  /\  a  e.  A )  ->  ( H `  a
)  e.  B )
65ex 113 . . . . . . . . . . . 12  |-  ( H : A --> B  -> 
( a  e.  A  ->  ( H `  a
)  e.  B ) )
7 ffvelrn 5416 . . . . . . . . . . . . 13  |-  ( ( H : A --> B  /\  b  e.  A )  ->  ( H `  b
)  e.  B )
87ex 113 . . . . . . . . . . . 12  |-  ( H : A --> B  -> 
( b  e.  A  ->  ( H `  b
)  e.  B ) )
9 ffvelrn 5416 . . . . . . . . . . . . 13  |-  ( ( H : A --> B  /\  c  e.  A )  ->  ( H `  c
)  e.  B )
109ex 113 . . . . . . . . . . . 12  |-  ( H : A --> B  -> 
( c  e.  A  ->  ( H `  c
)  e.  B ) )
116, 8, 103anim123d 1255 . . . . . . . . . . 11  |-  ( H : A --> B  -> 
( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  (
( H `  a
)  e.  B  /\  ( H `  b )  e.  B  /\  ( H `  c )  e.  B ) ) )
123, 4, 113syl 17 . . . . . . . . . 10  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  (
( H `  a
)  e.  B  /\  ( H `  b )  e.  B  /\  ( H `  c )  e.  B ) ) )
1312imp 122 . . . . . . . . 9  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( ( H `  a )  e.  B  /\  ( H `  b )  e.  B  /\  ( H `  c )  e.  B ) )
14 breq1 3840 . . . . . . . . . . 11  |-  ( x  =  ( H `  a )  ->  (
x S y  <->  ( H `  a ) S y ) )
15 breq1 3840 . . . . . . . . . . . 12  |-  ( x  =  ( H `  a )  ->  (
x S z  <->  ( H `  a ) S z ) )
1615orbi1d 740 . . . . . . . . . . 11  |-  ( x  =  ( H `  a )  ->  (
( x S z  \/  z S y )  <->  ( ( H `
 a ) S z  \/  z S y ) ) )
1714, 16imbi12d 232 . . . . . . . . . 10  |-  ( x  =  ( H `  a )  ->  (
( x S y  ->  ( x S z  \/  z S y ) )  <->  ( ( H `  a ) S y  ->  (
( H `  a
) S z  \/  z S y ) ) ) )
18 breq2 3841 . . . . . . . . . . 11  |-  ( y  =  ( H `  b )  ->  (
( H `  a
) S y  <->  ( H `  a ) S ( H `  b ) ) )
19 breq2 3841 . . . . . . . . . . . 12  |-  ( y  =  ( H `  b )  ->  (
z S y  <->  z S
( H `  b
) ) )
2019orbi2d 739 . . . . . . . . . . 11  |-  ( y  =  ( H `  b )  ->  (
( ( H `  a ) S z  \/  z S y )  <->  ( ( H `
 a ) S z  \/  z S ( H `  b
) ) ) )
2118, 20imbi12d 232 . . . . . . . . . 10  |-  ( y  =  ( H `  b )  ->  (
( ( H `  a ) S y  ->  ( ( H `
 a ) S z  \/  z S y ) )  <->  ( ( H `  a ) S ( H `  b )  ->  (
( H `  a
) S z  \/  z S ( H `
 b ) ) ) ) )
22 breq2 3841 . . . . . . . . . . . 12  |-  ( z  =  ( H `  c )  ->  (
( H `  a
) S z  <->  ( H `  a ) S ( H `  c ) ) )
23 breq1 3840 . . . . . . . . . . . 12  |-  ( z  =  ( H `  c )  ->  (
z S ( H `
 b )  <->  ( H `  c ) S ( H `  b ) ) )
2422, 23orbi12d 742 . . . . . . . . . . 11  |-  ( z  =  ( H `  c )  ->  (
( ( H `  a ) S z  \/  z S ( H `  b ) )  <->  ( ( H `
 a ) S ( H `  c
)  \/  ( H `
 c ) S ( H `  b
) ) ) )
2524imbi2d 228 . . . . . . . . . 10  |-  ( z  =  ( H `  c )  ->  (
( ( H `  a ) S ( H `  b )  ->  ( ( H `
 a ) S z  \/  z S ( H `  b
) ) )  <->  ( ( H `  a ) S ( H `  b )  ->  (
( H `  a
) S ( H `
 c )  \/  ( H `  c
) S ( H `
 b ) ) ) ) )
2617, 21, 25rspc3v 2736 . . . . . . . . 9  |-  ( ( ( H `  a
)  e.  B  /\  ( H `  b )  e.  B  /\  ( H `  c )  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x S y  ->  ( x S z  \/  z S y ) )  -> 
( ( H `  a ) S ( H `  b )  ->  ( ( H `
 a ) S ( H `  c
)  \/  ( H `
 c ) S ( H `  b
) ) ) ) )
2713, 26syl 14 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  (
x S y  -> 
( x S z  \/  z S y ) )  ->  (
( H `  a
) S ( H `
 b )  -> 
( ( H `  a ) S ( H `  c )  \/  ( H `  c ) S ( H `  b ) ) ) ) )
28 isorel 5569 . . . . . . . . . 10  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A )
)  ->  ( a R b  <->  ( H `  a ) S ( H `  b ) ) )
29283adantr3 1104 . . . . . . . . 9  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( a R b  <->  ( H `  a ) S ( H `  b ) ) )
30 isorel 5569 . . . . . . . . . . 11  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  c  e.  A )
)  ->  ( a R c  <->  ( H `  a ) S ( H `  c ) ) )
31303adantr2 1103 . . . . . . . . . 10  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( a R c  <->  ( H `  a ) S ( H `  c ) ) )
32 isorel 5569 . . . . . . . . . . . 12  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
c  e.  A  /\  b  e.  A )
)  ->  ( c R b  <->  ( H `  c ) S ( H `  b ) ) )
3332ancom2s 533 . . . . . . . . . . 11  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
b  e.  A  /\  c  e.  A )
)  ->  ( c R b  <->  ( H `  c ) S ( H `  b ) ) )
34333adantr1 1102 . . . . . . . . . 10  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( c R b  <->  ( H `  c ) S ( H `  b ) ) )
3531, 34orbi12d 742 . . . . . . . . 9  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( (
a R c  \/  c R b )  <-> 
( ( H `  a ) S ( H `  c )  \/  ( H `  c ) S ( H `  b ) ) ) )
3629, 35imbi12d 232 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( (
a R b  -> 
( a R c  \/  c R b ) )  <->  ( ( H `  a ) S ( H `  b )  ->  (
( H `  a
) S ( H `
 c )  \/  ( H `  c
) S ( H `
 b ) ) ) ) )
3727, 36sylibrd 167 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A  /\  c  e.  A )
)  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  (
x S y  -> 
( x S z  \/  z S y ) )  ->  (
a R b  -> 
( a R c  \/  c R b ) ) ) )
382, 37sylan2br 282 . . . . . 6  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
( a  e.  A  /\  b  e.  A
)  /\  c  e.  A ) )  -> 
( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x S y  ->  ( x S z  \/  z S y ) )  ->  ( a R b  ->  ( a R c  \/  c R b ) ) ) )
3938anassrs 392 . . . . 5  |-  ( ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A )
)  /\  c  e.  A )  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x S y  ->  ( x S z  \/  z S y ) )  -> 
( a R b  ->  ( a R c  \/  c R b ) ) ) )
4039ralrimdva 2453 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
a  e.  A  /\  b  e.  A )
)  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  (
x S y  -> 
( x S z  \/  z S y ) )  ->  A. c  e.  A  ( a R b  ->  (
a R c  \/  c R b ) ) ) )
4140ralrimdvva 2458 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x S y  ->  (
x S z  \/  z S y ) )  ->  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( a R b  ->  (
a R c  \/  c R b ) ) ) )
421, 41anim12d 328 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( ( S  Po  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
x S y  -> 
( x S z  \/  z S y ) ) )  -> 
( R  Po  A  /\  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( a R b  ->  ( a R c  \/  c R b ) ) ) ) )
43 df-iso 4115 . 2  |-  ( S  Or  B  <->  ( S  Po  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x S y  ->  (
x S z  \/  z S y ) ) ) )
44 df-iso 4115 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( a R b  ->  (
a R c  \/  c R b ) ) ) )
4542, 43, 443imtr4g 203 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Or  B  ->  R  Or  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    /\ w3a 924    = wceq 1289    e. wcel 1438   A.wral 2359   class class class wbr 3837    Po wpo 4112    Or wor 4113   -->wf 4998   -1-1-onto->wf1o 5001   ` cfv 5002    Isom wiso 5003
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2839  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-f1o 5009  df-fv 5010  df-isom 5011
This theorem is referenced by:  isoso  5586
  Copyright terms: Public domain W3C validator