| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isosolem | Unicode version | ||
| Description: Lemma for isoso 5917. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| isosolem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isopolem 5914 |
. . 3
| |
| 2 | df-3an 983 |
. . . . . . 7
| |
| 3 | isof1o 5899 |
. . . . . . . . . . 11
| |
| 4 | f1of 5544 |
. . . . . . . . . . 11
| |
| 5 | ffvelcdm 5736 |
. . . . . . . . . . . . 13
| |
| 6 | 5 | ex 115 |
. . . . . . . . . . . 12
|
| 7 | ffvelcdm 5736 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | ex 115 |
. . . . . . . . . . . 12
|
| 9 | ffvelcdm 5736 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | ex 115 |
. . . . . . . . . . . 12
|
| 11 | 6, 8, 10 | 3anim123d 1332 |
. . . . . . . . . . 11
|
| 12 | 3, 4, 11 | 3syl 17 |
. . . . . . . . . 10
|
| 13 | 12 | imp 124 |
. . . . . . . . 9
|
| 14 | breq1 4062 |
. . . . . . . . . . 11
| |
| 15 | breq1 4062 |
. . . . . . . . . . . 12
| |
| 16 | 15 | orbi1d 793 |
. . . . . . . . . . 11
|
| 17 | 14, 16 | imbi12d 234 |
. . . . . . . . . 10
|
| 18 | breq2 4063 |
. . . . . . . . . . 11
| |
| 19 | breq2 4063 |
. . . . . . . . . . . 12
| |
| 20 | 19 | orbi2d 792 |
. . . . . . . . . . 11
|
| 21 | 18, 20 | imbi12d 234 |
. . . . . . . . . 10
|
| 22 | breq2 4063 |
. . . . . . . . . . . 12
| |
| 23 | breq1 4062 |
. . . . . . . . . . . 12
| |
| 24 | 22, 23 | orbi12d 795 |
. . . . . . . . . . 11
|
| 25 | 24 | imbi2d 230 |
. . . . . . . . . 10
|
| 26 | 17, 21, 25 | rspc3v 2900 |
. . . . . . . . 9
|
| 27 | 13, 26 | syl 14 |
. . . . . . . 8
|
| 28 | isorel 5900 |
. . . . . . . . . 10
| |
| 29 | 28 | 3adantr3 1161 |
. . . . . . . . 9
|
| 30 | isorel 5900 |
. . . . . . . . . . 11
| |
| 31 | 30 | 3adantr2 1160 |
. . . . . . . . . 10
|
| 32 | isorel 5900 |
. . . . . . . . . . . 12
| |
| 33 | 32 | ancom2s 566 |
. . . . . . . . . . 11
|
| 34 | 33 | 3adantr1 1159 |
. . . . . . . . . 10
|
| 35 | 31, 34 | orbi12d 795 |
. . . . . . . . 9
|
| 36 | 29, 35 | imbi12d 234 |
. . . . . . . 8
|
| 37 | 27, 36 | sylibrd 169 |
. . . . . . 7
|
| 38 | 2, 37 | sylan2br 288 |
. . . . . 6
|
| 39 | 38 | anassrs 400 |
. . . . 5
|
| 40 | 39 | ralrimdva 2588 |
. . . 4
|
| 41 | 40 | ralrimdvva 2593 |
. . 3
|
| 42 | 1, 41 | anim12d 335 |
. 2
|
| 43 | df-iso 4362 |
. 2
| |
| 44 | df-iso 4362 |
. 2
| |
| 45 | 42, 43, 44 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-f1o 5297 df-fv 5298 df-isom 5299 |
| This theorem is referenced by: isoso 5917 |
| Copyright terms: Public domain | W3C validator |