ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpb Unicode version

Theorem 3simpb 997
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpb  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ch ) )

Proof of Theorem 3simpb
StepHypRef Expression
1 3ancomb 988 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ph  /\  ch  /\ 
ps ) )
2 3simpa 996 . 2  |-  ( (
ph  /\  ch  /\  ps )  ->  ( ph  /\  ch ) )
31, 2sylbi 121 1  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3adant2  1018  3adantl2  1156  3adantr2  1159  enq0tr  7518  ixxssixx  9994  rebtwn2zlemshrink  10360  zsumdc  11566  muldvds1  11998  dvds2add  12007  dvds2sub  12008  dvdstr  12010  pw2dvdslemn  12358  ctinf  12672  mndissubm  13177  gsumfzconst  13547
  Copyright terms: Public domain W3C validator