ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpb Unicode version

Theorem 3simpb 995
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpb  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ch ) )

Proof of Theorem 3simpb
StepHypRef Expression
1 3ancomb 986 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ph  /\  ch  /\ 
ps ) )
2 3simpa 994 . 2  |-  ( (
ph  /\  ch  /\  ps )  ->  ( ph  /\  ch ) )
31, 2sylbi 121 1  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  3adant2  1016  3adantl2  1154  3adantr2  1157  enq0tr  7435  ixxssixx  9904  rebtwn2zlemshrink  10256  zsumdc  11394  muldvds1  11825  dvds2add  11834  dvds2sub  11835  dvdstr  11837  pw2dvdslemn  12167  ctinf  12433  mndissubm  12871
  Copyright terms: Public domain W3C validator