ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpb Unicode version

Theorem 3simpb 1019
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpb  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ch ) )

Proof of Theorem 3simpb
StepHypRef Expression
1 3ancomb 1010 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ph  /\  ch  /\ 
ps ) )
2 3simpa 1018 . 2  |-  ( (
ph  /\  ch  /\  ps )  ->  ( ph  /\  ch ) )
31, 2sylbi 121 1  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  3adant2  1040  3adantl2  1178  3adantr2  1181  enq0tr  7617  ixxssixx  10094  rebtwn2zlemshrink  10468  zsumdc  11890  muldvds1  12322  dvds2add  12331  dvds2sub  12332  dvdstr  12334  pw2dvdslemn  12682  ctinf  12996  mndissubm  13503  gsumfzconst  13873
  Copyright terms: Public domain W3C validator