| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpb | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3simpb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancomb 1010 |
. 2
| |
| 2 | 3simpa 1018 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3adant2 1040 3adantl2 1178 3adantr2 1181 enq0tr 7617 ixxssixx 10094 rebtwn2zlemshrink 10468 zsumdc 11890 muldvds1 12322 dvds2add 12331 dvds2sub 12332 dvdstr 12334 pw2dvdslemn 12682 ctinf 12996 mndissubm 13503 gsumfzconst 13873 |
| Copyright terms: Public domain | W3C validator |