ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpb Unicode version

Theorem 3simpb 980
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpb  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ch ) )

Proof of Theorem 3simpb
StepHypRef Expression
1 3ancomb 971 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ph  /\  ch  /\ 
ps ) )
2 3simpa 979 . 2  |-  ( (
ph  /\  ch  /\  ps )  ->  ( ph  /\  ch ) )
31, 2sylbi 120 1  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 965
This theorem is referenced by:  3adant2  1001  3adantl2  1139  3adantr2  1142  enq0tr  7348  ixxssixx  9799  rebtwn2zlemshrink  10146  zsumdc  11274  muldvds1  11704  dvds2add  11713  dvds2sub  11714  dvdstr  11716  pw2dvdslemn  12030  ctinf  12142
  Copyright terms: Public domain W3C validator