ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  po3nr Unicode version

Theorem po3nr 4401
Description: A partial order relation has no 3-cycle loops. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
po3nr  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )

Proof of Theorem po3nr
StepHypRef Expression
1 po2nr 4400 . . 3  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  D  e.  A
) )  ->  -.  ( B R D  /\  D R B ) )
213adantr2 1181 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R D  /\  D R B ) )
3 df-3an 1004 . . 3  |-  ( ( B R C  /\  C R D  /\  D R B )  <->  ( ( B R C  /\  C R D )  /\  D R B ) )
4 potr 4399 . . . 4  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D )  ->  B R D ) )
54anim1d 336 . . 3  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( ( B R C  /\  C R D )  /\  D R B )  ->  ( B R D  /\  D R B ) ) )
63, 5biimtrid 152 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D  /\  D R B )  ->  ( B R D  /\  D R B ) ) )
72, 6mtod 667 1  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 1002    e. wcel 2200   class class class wbr 4083    Po wpo 4385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-po 4387
This theorem is referenced by:  so3nr  4413
  Copyright terms: Public domain W3C validator