| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r2 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3expb 1206 |
. 2
|
| 3 | 2 | 3adantr2 1159 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: grppnpcan2 13226 mulgsubdir 13292 imasrng 13512 imasring 13620 opprring 13635 mettri2 14598 mettri 14609 xmetrtri 14612 |
| Copyright terms: Public domain | W3C validator |