ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ancomb Unicode version

Theorem 3ancomb 986
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3ancomb  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ph  /\  ch  /\ 
ps ) )

Proof of Theorem 3ancomb
StepHypRef Expression
1 3ancoma 985 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ps  /\  ph  /\ 
ch ) )
2 3anrot 983 . 2  |-  ( ( ps  /\  ph  /\  ch )  <->  ( ph  /\  ch  /\  ps ) )
31, 2bitri 184 1  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ph  /\  ch  /\ 
ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    /\ w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  3simpb  995  addcanprg  7614  elioore  9910  pcgcd  12322  ablsubsub23  13081  xmetrtri  13769
  Copyright terms: Public domain W3C validator