ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioore Unicode version

Theorem elioore 9869
Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elioore  |-  ( A  e.  ( B (,) C )  ->  A  e.  RR )

Proof of Theorem elioore
StepHypRef Expression
1 elioo3g 9867 . 2  |-  ( A  e.  ( B (,) C )  <->  ( ( B  e.  RR*  /\  C  e.  RR*  /\  A  e. 
RR* )  /\  ( B  <  A  /\  A  <  C ) ) )
2 3ancomb 981 . . 3  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  A  e. 
RR* )  <->  ( B  e.  RR*  /\  A  e. 
RR*  /\  C  e.  RR* ) )
3 xrre2 9778 . . 3  |-  ( ( ( B  e.  RR*  /\  A  e.  RR*  /\  C  e.  RR* )  /\  ( B  <  A  /\  A  <  C ) )  ->  A  e.  RR )
42, 3sylanb 282 . 2  |-  ( ( ( B  e.  RR*  /\  C  e.  RR*  /\  A  e.  RR* )  /\  ( B  <  A  /\  A  <  C ) )  ->  A  e.  RR )
51, 4sylbi 120 1  |-  ( A  e.  ( B (,) C )  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   RRcr 7773   RR*cxr 7953    < clt 7954   (,)cioo 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-ioo 9849
This theorem is referenced by:  iooval2  9872  elioo4g  9891  ioossre  9892  zltaddlt1le  9964  tgioo  13340  ivthinc  13415  reeff1oleme  13487  sin0pilem1  13496  sin0pilem2  13497  pilem3  13498  pire  13501  sinq34lt0t  13546  cosq14gt0  13547  cosq23lt0  13548  coseq0q4123  13549  tanrpcl  13552  tangtx  13553  cos02pilt1  13566  cos0pilt1  13567  ioocosf1o  13569  iooref1o  14066
  Copyright terms: Public domain W3C validator