| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elioore | Unicode version | ||
| Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| elioore |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioo3g 10067 |
. 2
| |
| 2 | 3ancomb 989 |
. . 3
| |
| 3 | xrre2 9978 |
. . 3
| |
| 4 | 2, 3 | sylanb 284 |
. 2
|
| 5 | 1, 4 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-ioo 10049 |
| This theorem is referenced by: iooval2 10072 elioo4g 10091 ioossre 10092 zltaddlt1le 10164 tgioo 15141 ivthinc 15230 ivthdichlem 15238 reeff1oleme 15359 sin0pilem1 15368 sin0pilem2 15369 pilem3 15370 pire 15373 sinq34lt0t 15418 cosq14gt0 15419 cosq23lt0 15420 coseq0q4123 15421 tanrpcl 15424 tangtx 15425 cos02pilt1 15438 cos0pilt1 15439 ioocosf1o 15441 iooref1o 16175 |
| Copyright terms: Public domain | W3C validator |