| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elioore | Unicode version | ||
| Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| elioore |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioo3g 10034 |
. 2
| |
| 2 | 3ancomb 989 |
. . 3
| |
| 3 | xrre2 9945 |
. . 3
| |
| 4 | 2, 3 | sylanb 284 |
. 2
|
| 5 | 1, 4 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-po 4344 df-iso 4345 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-ioo 10016 |
| This theorem is referenced by: iooval2 10039 elioo4g 10058 ioossre 10059 zltaddlt1le 10131 tgioo 15059 ivthinc 15148 ivthdichlem 15156 reeff1oleme 15277 sin0pilem1 15286 sin0pilem2 15287 pilem3 15288 pire 15291 sinq34lt0t 15336 cosq14gt0 15337 cosq23lt0 15338 coseq0q4123 15339 tanrpcl 15342 tangtx 15343 cos02pilt1 15356 cos0pilt1 15357 ioocosf1o 15359 iooref1o 16010 |
| Copyright terms: Public domain | W3C validator |