Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elioore | Unicode version |
Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
elioore |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo3g 9846 | . 2 | |
2 | 3ancomb 976 | . . 3 | |
3 | xrre2 9757 | . . 3 | |
4 | 2, 3 | sylanb 282 | . 2 |
5 | 1, 4 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 cxr 7932 clt 7933 cioo 9824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-ioo 9828 |
This theorem is referenced by: iooval2 9851 elioo4g 9870 ioossre 9871 zltaddlt1le 9943 tgioo 13186 ivthinc 13261 reeff1oleme 13333 sin0pilem1 13342 sin0pilem2 13343 pilem3 13344 pire 13347 sinq34lt0t 13392 cosq14gt0 13393 cosq23lt0 13394 coseq0q4123 13395 tanrpcl 13398 tangtx 13399 cos02pilt1 13412 cos0pilt1 13413 ioocosf1o 13415 iooref1o 13913 |
Copyright terms: Public domain | W3C validator |