ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioore Unicode version

Theorem elioore 9255
Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elioore  |-  ( A  e.  ( B (,) C )  ->  A  e.  RR )

Proof of Theorem elioore
StepHypRef Expression
1 elioo3g 9253 . 2  |-  ( A  e.  ( B (,) C )  <->  ( ( B  e.  RR*  /\  C  e.  RR*  /\  A  e. 
RR* )  /\  ( B  <  A  /\  A  <  C ) ) )
2 3ancomb 930 . . 3  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  A  e. 
RR* )  <->  ( B  e.  RR*  /\  A  e. 
RR*  /\  C  e.  RR* ) )
3 xrre2 9208 . . 3  |-  ( ( ( B  e.  RR*  /\  A  e.  RR*  /\  C  e.  RR* )  /\  ( B  <  A  /\  A  <  C ) )  ->  A  e.  RR )
42, 3sylanb 278 . 2  |-  ( ( ( B  e.  RR*  /\  C  e.  RR*  /\  A  e.  RR* )  /\  ( B  <  A  /\  A  <  C ) )  ->  A  e.  RR )
51, 4sylbi 119 1  |-  ( A  e.  ( B (,) C )  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 922    e. wcel 1436   class class class wbr 3820  (class class class)co 5607   RRcr 7286   RR*cxr 7458    < clt 7459   (,)cioo 9231
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3931  ax-pow 3983  ax-pr 4009  ax-un 4233  ax-setind 4325  ax-cnex 7373  ax-resscn 7374  ax-pre-ltirr 7394  ax-pre-ltwlin 7395  ax-pre-lttrn 7396
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-opab 3875  df-id 4093  df-po 4096  df-iso 4097  df-xp 4416  df-rel 4417  df-cnv 4418  df-co 4419  df-dm 4420  df-iota 4943  df-fun 4980  df-fv 4986  df-ov 5610  df-oprab 5611  df-mpt2 5612  df-pnf 7461  df-mnf 7462  df-xr 7463  df-ltxr 7464  df-le 7465  df-ioo 9235
This theorem is referenced by:  iooval2  9258  elioo4g  9277  ioossre  9278  zltaddlt1le  9348
  Copyright terms: Public domain W3C validator