| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elioore | Unicode version | ||
| Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| elioore | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elioo3g 9985 | 
. 2
 | |
| 2 | 3ancomb 988 | 
. . 3
 | |
| 3 | xrre2 9896 | 
. . 3
 | |
| 4 | 2, 3 | sylanb 284 | 
. 2
 | 
| 5 | 1, 4 | sylbi 121 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-ioo 9967 | 
| This theorem is referenced by: iooval2 9990 elioo4g 10009 ioossre 10010 zltaddlt1le 10082 tgioo 14790 ivthinc 14879 ivthdichlem 14887 reeff1oleme 15008 sin0pilem1 15017 sin0pilem2 15018 pilem3 15019 pire 15022 sinq34lt0t 15067 cosq14gt0 15068 cosq23lt0 15069 coseq0q4123 15070 tanrpcl 15073 tangtx 15074 cos02pilt1 15087 cos0pilt1 15088 ioocosf1o 15090 iooref1o 15678 | 
| Copyright terms: Public domain | W3C validator |