ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsubsub23 Unicode version

Theorem ablsubsub23 13455
Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
ablsubsub23.v  |-  V  =  ( Base `  G
)
ablsubsub23.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
ablsubsub23  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .-  B )  =  C  <->  ( A  .-  C )  =  B ) )

Proof of Theorem ablsubsub23
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  G  e.  Abel )
2 simpr3 1007 . . . 4  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  C  e.  V )
3 simpr2 1006 . . . 4  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  B  e.  V )
4 ablsubsub23.v . . . . 5  |-  V  =  ( Base `  G
)
5 eqid 2196 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
64, 5ablcom 13433 . . . 4  |-  ( ( G  e.  Abel  /\  C  e.  V  /\  B  e.  V )  ->  ( C ( +g  `  G
) B )  =  ( B ( +g  `  G ) C ) )
71, 2, 3, 6syl3anc 1249 . . 3  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( C
( +g  `  G ) B )  =  ( B ( +g  `  G
) C ) )
87eqeq1d 2205 . 2  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( C ( +g  `  G
) B )  =  A  <->  ( B ( +g  `  G ) C )  =  A ) )
9 ablgrp 13419 . . 3  |-  ( G  e.  Abel  ->  G  e. 
Grp )
10 ablsubsub23.m . . . 4  |-  .-  =  ( -g `  G )
114, 5, 10grpsubadd 13220 . . 3  |-  ( ( G  e.  Grp  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( A  .-  B
)  =  C  <->  ( C
( +g  `  G ) B )  =  A ) )
129, 11sylan 283 . 2  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .-  B )  =  C  <->  ( C ( +g  `  G ) B )  =  A ) )
13 3ancomb 988 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  <->  ( A  e.  V  /\  C  e.  V  /\  B  e.  V )
)
1413biimpi 120 . . 3  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( A  e.  V  /\  C  e.  V  /\  B  e.  V
) )
154, 5, 10grpsubadd 13220 . . 3  |-  ( ( G  e.  Grp  /\  ( A  e.  V  /\  C  e.  V  /\  B  e.  V
) )  ->  (
( A  .-  C
)  =  B  <->  ( B
( +g  `  G ) C )  =  A ) )
169, 14, 15syl2an 289 . 2  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .-  C )  =  B  <->  ( B ( +g  `  G ) C )  =  A ) )
178, 12, 163bitr4d 220 1  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .-  B )  =  C  <->  ( A  .-  C )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   Grpcgrp 13132   -gcsg 13134   Abelcabl 13415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-cmn 13416  df-abl 13417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator