ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsubsub23 Unicode version

Theorem ablsubsub23 13776
Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
ablsubsub23.v  |-  V  =  ( Base `  G
)
ablsubsub23.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
ablsubsub23  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .-  B )  =  C  <->  ( A  .-  C )  =  B ) )

Proof of Theorem ablsubsub23
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  G  e.  Abel )
2 simpr3 1008 . . . 4  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  C  e.  V )
3 simpr2 1007 . . . 4  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  B  e.  V )
4 ablsubsub23.v . . . . 5  |-  V  =  ( Base `  G
)
5 eqid 2207 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
64, 5ablcom 13754 . . . 4  |-  ( ( G  e.  Abel  /\  C  e.  V  /\  B  e.  V )  ->  ( C ( +g  `  G
) B )  =  ( B ( +g  `  G ) C ) )
71, 2, 3, 6syl3anc 1250 . . 3  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( C
( +g  `  G ) B )  =  ( B ( +g  `  G
) C ) )
87eqeq1d 2216 . 2  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( C ( +g  `  G
) B )  =  A  <->  ( B ( +g  `  G ) C )  =  A ) )
9 ablgrp 13740 . . 3  |-  ( G  e.  Abel  ->  G  e. 
Grp )
10 ablsubsub23.m . . . 4  |-  .-  =  ( -g `  G )
114, 5, 10grpsubadd 13535 . . 3  |-  ( ( G  e.  Grp  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( A  .-  B
)  =  C  <->  ( C
( +g  `  G ) B )  =  A ) )
129, 11sylan 283 . 2  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .-  B )  =  C  <->  ( C ( +g  `  G ) B )  =  A ) )
13 3ancomb 989 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  <->  ( A  e.  V  /\  C  e.  V  /\  B  e.  V )
)
1413biimpi 120 . . 3  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( A  e.  V  /\  C  e.  V  /\  B  e.  V
) )
154, 5, 10grpsubadd 13535 . . 3  |-  ( ( G  e.  Grp  /\  ( A  e.  V  /\  C  e.  V  /\  B  e.  V
) )  ->  (
( A  .-  C
)  =  B  <->  ( B
( +g  `  G ) C )  =  A ) )
169, 14, 15syl2an 289 . 2  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .-  C )  =  B  <->  ( B ( +g  `  G ) C )  =  A ) )
178, 12, 163bitr4d 220 1  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .-  B )  =  C  <->  ( A  .-  C )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   Grpcgrp 13447   -gcsg 13449   Abelcabl 13736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-sbg 13452  df-cmn 13737  df-abl 13738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator