ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsubsub23 Unicode version

Theorem ablsubsub23 13661
Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
ablsubsub23.v  |-  V  =  ( Base `  G
)
ablsubsub23.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
ablsubsub23  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .-  B )  =  C  <->  ( A  .-  C )  =  B ) )

Proof of Theorem ablsubsub23
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  G  e.  Abel )
2 simpr3 1008 . . . 4  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  C  e.  V )
3 simpr2 1007 . . . 4  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  B  e.  V )
4 ablsubsub23.v . . . . 5  |-  V  =  ( Base `  G
)
5 eqid 2205 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
64, 5ablcom 13639 . . . 4  |-  ( ( G  e.  Abel  /\  C  e.  V  /\  B  e.  V )  ->  ( C ( +g  `  G
) B )  =  ( B ( +g  `  G ) C ) )
71, 2, 3, 6syl3anc 1250 . . 3  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( C
( +g  `  G ) B )  =  ( B ( +g  `  G
) C ) )
87eqeq1d 2214 . 2  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( C ( +g  `  G
) B )  =  A  <->  ( B ( +g  `  G ) C )  =  A ) )
9 ablgrp 13625 . . 3  |-  ( G  e.  Abel  ->  G  e. 
Grp )
10 ablsubsub23.m . . . 4  |-  .-  =  ( -g `  G )
114, 5, 10grpsubadd 13420 . . 3  |-  ( ( G  e.  Grp  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( A  .-  B
)  =  C  <->  ( C
( +g  `  G ) B )  =  A ) )
129, 11sylan 283 . 2  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .-  B )  =  C  <->  ( C ( +g  `  G ) B )  =  A ) )
13 3ancomb 989 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  <->  ( A  e.  V  /\  C  e.  V  /\  B  e.  V )
)
1413biimpi 120 . . 3  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( A  e.  V  /\  C  e.  V  /\  B  e.  V
) )
154, 5, 10grpsubadd 13420 . . 3  |-  ( ( G  e.  Grp  /\  ( A  e.  V  /\  C  e.  V  /\  B  e.  V
) )  ->  (
( A  .-  C
)  =  B  <->  ( B
( +g  `  G ) C )  =  A ) )
169, 14, 15syl2an 289 . 2  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .-  C )  =  B  <->  ( B ( +g  `  G ) C )  =  A ) )
178, 12, 163bitr4d 220 1  |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .-  B )  =  C  <->  ( A  .-  C )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   Grpcgrp 13332   -gcsg 13334   Abelcabl 13621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337  df-cmn 13622  df-abl 13623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator