ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanprg Unicode version

Theorem addcanprg 7678
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.)
Assertion
Ref Expression
addcanprg  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A  +P.  B
)  =  ( A  +P.  C )  ->  B  =  C )
)

Proof of Theorem addcanprg
StepHypRef Expression
1 addcanprleml 7676 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 1st `  B
)  C_  ( 1st `  C ) )
2 3ancomb 988 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  <->  ( A  e.  P.  /\  C  e. 
P.  /\  B  e.  P. ) )
3 eqcom 2195 . . . . . . 7  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  <->  ( A  +P.  C )  =  ( A  +P.  B ) )
42, 3anbi12i 460 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  <-> 
( ( A  e. 
P.  /\  C  e.  P.  /\  B  e.  P. )  /\  ( A  +P.  C )  =  ( A  +P.  B ) ) )
5 addcanprleml 7676 . . . . . 6  |-  ( ( ( A  e.  P.  /\  C  e.  P.  /\  B  e.  P. )  /\  ( A  +P.  C
)  =  ( A  +P.  B ) )  ->  ( 1st `  C
)  C_  ( 1st `  B ) )
64, 5sylbi 121 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 1st `  C
)  C_  ( 1st `  B ) )
71, 6eqssd 3197 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 1st `  B
)  =  ( 1st `  C ) )
8 addcanprlemu 7677 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 2nd `  B
)  C_  ( 2nd `  C ) )
9 addcanprlemu 7677 . . . . . 6  |-  ( ( ( A  e.  P.  /\  C  e.  P.  /\  B  e.  P. )  /\  ( A  +P.  C
)  =  ( A  +P.  B ) )  ->  ( 2nd `  C
)  C_  ( 2nd `  B ) )
104, 9sylbi 121 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 2nd `  C
)  C_  ( 2nd `  B ) )
118, 10eqssd 3197 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 2nd `  B
)  =  ( 2nd `  C ) )
127, 11jca 306 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( ( 1st `  B )  =  ( 1st `  C )  /\  ( 2nd `  B
)  =  ( 2nd `  C ) ) )
13 preqlu 7534 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  =  C  <-> 
( ( 1st `  B
)  =  ( 1st `  C )  /\  ( 2nd `  B )  =  ( 2nd `  C
) ) ) )
14133adant1 1017 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( B  =  C  <->  ( ( 1st `  B )  =  ( 1st `  C
)  /\  ( 2nd `  B )  =  ( 2nd `  C ) ) ) )
1514adantr 276 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( B  =  C  <->  ( ( 1st `  B )  =  ( 1st `  C )  /\  ( 2nd `  B
)  =  ( 2nd `  C ) ) ) )
1612, 15mpbird 167 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  B  =  C )
1716ex 115 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A  +P.  B
)  =  ( A  +P.  C )  ->  B  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3154   ` cfv 5255  (class class class)co 5919   1stc1st 6193   2ndc2nd 6194   P.cnp 7353    +P. cpp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iplp 7530
This theorem is referenced by:  lteupri  7679  ltaprg  7681  enrer  7797  mulcmpblnr  7803  mulgt0sr  7840  srpospr  7845
  Copyright terms: Public domain W3C validator