ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanprg Unicode version

Theorem addcanprg 7736
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.)
Assertion
Ref Expression
addcanprg  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A  +P.  B
)  =  ( A  +P.  C )  ->  B  =  C )
)

Proof of Theorem addcanprg
StepHypRef Expression
1 addcanprleml 7734 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 1st `  B
)  C_  ( 1st `  C ) )
2 3ancomb 989 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  <->  ( A  e.  P.  /\  C  e. 
P.  /\  B  e.  P. ) )
3 eqcom 2208 . . . . . . 7  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  <->  ( A  +P.  C )  =  ( A  +P.  B ) )
42, 3anbi12i 460 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  <-> 
( ( A  e. 
P.  /\  C  e.  P.  /\  B  e.  P. )  /\  ( A  +P.  C )  =  ( A  +P.  B ) ) )
5 addcanprleml 7734 . . . . . 6  |-  ( ( ( A  e.  P.  /\  C  e.  P.  /\  B  e.  P. )  /\  ( A  +P.  C
)  =  ( A  +P.  B ) )  ->  ( 1st `  C
)  C_  ( 1st `  B ) )
64, 5sylbi 121 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 1st `  C
)  C_  ( 1st `  B ) )
71, 6eqssd 3211 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 1st `  B
)  =  ( 1st `  C ) )
8 addcanprlemu 7735 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 2nd `  B
)  C_  ( 2nd `  C ) )
9 addcanprlemu 7735 . . . . . 6  |-  ( ( ( A  e.  P.  /\  C  e.  P.  /\  B  e.  P. )  /\  ( A  +P.  C
)  =  ( A  +P.  B ) )  ->  ( 2nd `  C
)  C_  ( 2nd `  B ) )
104, 9sylbi 121 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 2nd `  C
)  C_  ( 2nd `  B ) )
118, 10eqssd 3211 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 2nd `  B
)  =  ( 2nd `  C ) )
127, 11jca 306 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( ( 1st `  B )  =  ( 1st `  C )  /\  ( 2nd `  B
)  =  ( 2nd `  C ) ) )
13 preqlu 7592 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  =  C  <-> 
( ( 1st `  B
)  =  ( 1st `  C )  /\  ( 2nd `  B )  =  ( 2nd `  C
) ) ) )
14133adant1 1018 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( B  =  C  <->  ( ( 1st `  B )  =  ( 1st `  C
)  /\  ( 2nd `  B )  =  ( 2nd `  C ) ) ) )
1514adantr 276 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( B  =  C  <->  ( ( 1st `  B )  =  ( 1st `  C )  /\  ( 2nd `  B
)  =  ( 2nd `  C ) ) ) )
1612, 15mpbird 167 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  B  =  C )
1716ex 115 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A  +P.  B
)  =  ( A  +P.  C )  ->  B  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177    C_ wss 3167   ` cfv 5276  (class class class)co 5951   1stc1st 6231   2ndc2nd 6232   P.cnp 7411    +P. cpp 7413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-1o 6509  df-2o 6510  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-lti 7427  df-plpq 7464  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-mqqs 7470  df-1nqqs 7471  df-rq 7472  df-ltnqqs 7473  df-enq0 7544  df-nq0 7545  df-0nq0 7546  df-plq0 7547  df-mq0 7548  df-inp 7586  df-iplp 7588
This theorem is referenced by:  lteupri  7737  ltaprg  7739  enrer  7855  mulcmpblnr  7861  mulgt0sr  7898  srpospr  7903
  Copyright terms: Public domain W3C validator