| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitrd | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3bitrd.1 |
|
| 3bitrd.2 |
|
| 3bitrd.3 |
|
| Ref | Expression |
|---|---|
| 3bitrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitrd.1 |
. . 3
| |
| 2 | 3bitrd.2 |
. . 3
| |
| 3 | 1, 2 | bitrd 188 |
. 2
|
| 4 | 3bitrd.3 |
. 2
| |
| 5 | 3, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sbceqal 3084 sbcnel12g 3141 elxp4 5216 elxp5 5217 f1eq123d 5564 foeq123d 5565 f1oeq123d 5566 fnmptfvd 5739 ofrfval 6227 eloprabi 6342 fnmpoovd 6361 smoeq 6436 ecidg 6746 ixpsnval 6848 enqbreq2 7544 ltanqg 7587 caucvgprprlemexb 7894 caucvgsrlemgt1 7982 caucvgsrlemoffres 7987 ltrennb 8041 apneg 8758 mulext1 8759 apdivmuld 8960 ltdiv23 9039 lediv23 9040 halfpos 9342 addltmul 9348 div4p1lem1div2 9365 ztri3or 9489 supminfex 9792 iccf1o 10200 fzshftral 10304 fzoshftral 10444 infssuzex 10453 2tnp1ge0ge0 10521 fihashen1 11021 seq3coll 11064 s111 11164 swrdspsleq 11199 pfxeq 11228 wrd2ind 11255 cjap 11417 negfi 11739 tanaddaplem 12249 dvdssub 12349 addmodlteqALT 12370 dvdsmod 12373 oddp1even 12387 nn0o1gt2 12416 nn0oddm1d2 12420 bitscmp 12469 cncongr1 12625 cncongr2 12626 4sqlem11 12924 4sqlem17 12930 intopsn 13400 sgrp1 13444 sgrppropd 13446 issubg 13710 nmzsubg 13747 conjnmzb 13817 srg1zr 13950 ring1 14022 issubrg 14185 znf1o 14615 znleval 14617 znunit 14623 elmopn 15120 metss 15168 comet 15173 xmetxp 15181 limcmpted 15337 cnlimc 15346 lgsneg 15703 lgsne0 15717 lgsprme0 15721 lgsquadlem1 15756 lgsquadlem2 15757 2lgs 15783 2lgsoddprm 15792 edg0iedg0g 15866 wrdupgren 15896 wrdumgren 15906 |
| Copyright terms: Public domain | W3C validator |