| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitrd | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3bitrd.1 |
|
| 3bitrd.2 |
|
| 3bitrd.3 |
|
| Ref | Expression |
|---|---|
| 3bitrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitrd.1 |
. . 3
| |
| 2 | 3bitrd.2 |
. . 3
| |
| 3 | 1, 2 | bitrd 188 |
. 2
|
| 4 | 3bitrd.3 |
. 2
| |
| 5 | 3, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sbceqal 3054 sbcnel12g 3110 elxp4 5171 elxp5 5172 f1eq123d 5516 foeq123d 5517 f1oeq123d 5518 fnmptfvd 5686 ofrfval 6169 eloprabi 6284 fnmpoovd 6303 smoeq 6378 ecidg 6688 ixpsnval 6790 enqbreq2 7472 ltanqg 7515 caucvgprprlemexb 7822 caucvgsrlemgt1 7910 caucvgsrlemoffres 7915 ltrennb 7969 apneg 8686 mulext1 8687 apdivmuld 8888 ltdiv23 8967 lediv23 8968 halfpos 9270 addltmul 9276 div4p1lem1div2 9293 ztri3or 9417 supminfex 9720 iccf1o 10128 fzshftral 10232 fzoshftral 10369 infssuzex 10378 2tnp1ge0ge0 10446 fihashen1 10946 seq3coll 10989 s111 11088 swrdspsleq 11123 pfxeq 11150 cjap 11250 negfi 11572 tanaddaplem 12082 dvdssub 12182 addmodlteqALT 12203 dvdsmod 12206 oddp1even 12220 nn0o1gt2 12249 nn0oddm1d2 12253 bitscmp 12302 cncongr1 12458 cncongr2 12459 4sqlem11 12757 4sqlem17 12763 intopsn 13232 sgrp1 13276 sgrppropd 13278 issubg 13542 nmzsubg 13579 conjnmzb 13649 srg1zr 13782 ring1 13854 issubrg 14016 znf1o 14446 znleval 14448 znunit 14454 elmopn 14951 metss 14999 comet 15004 xmetxp 15012 limcmpted 15168 cnlimc 15177 lgsneg 15534 lgsne0 15548 lgsprme0 15552 lgsquadlem1 15587 lgsquadlem2 15588 2lgs 15614 2lgsoddprm 15623 edg0iedg0g 15693 |
| Copyright terms: Public domain | W3C validator |