| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitrd | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3bitrd.1 |
|
| 3bitrd.2 |
|
| 3bitrd.3 |
|
| Ref | Expression |
|---|---|
| 3bitrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitrd.1 |
. . 3
| |
| 2 | 3bitrd.2 |
. . 3
| |
| 3 | 1, 2 | bitrd 188 |
. 2
|
| 4 | 3bitrd.3 |
. 2
| |
| 5 | 3, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sbceqal 3061 sbcnel12g 3118 elxp4 5189 elxp5 5190 f1eq123d 5536 foeq123d 5537 f1oeq123d 5538 fnmptfvd 5707 ofrfval 6190 eloprabi 6305 fnmpoovd 6324 smoeq 6399 ecidg 6709 ixpsnval 6811 enqbreq2 7505 ltanqg 7548 caucvgprprlemexb 7855 caucvgsrlemgt1 7943 caucvgsrlemoffres 7948 ltrennb 8002 apneg 8719 mulext1 8720 apdivmuld 8921 ltdiv23 9000 lediv23 9001 halfpos 9303 addltmul 9309 div4p1lem1div2 9326 ztri3or 9450 supminfex 9753 iccf1o 10161 fzshftral 10265 fzoshftral 10404 infssuzex 10413 2tnp1ge0ge0 10481 fihashen1 10981 seq3coll 11024 s111 11123 swrdspsleq 11158 pfxeq 11187 wrd2ind 11214 cjap 11332 negfi 11654 tanaddaplem 12164 dvdssub 12264 addmodlteqALT 12285 dvdsmod 12288 oddp1even 12302 nn0o1gt2 12331 nn0oddm1d2 12335 bitscmp 12384 cncongr1 12540 cncongr2 12541 4sqlem11 12839 4sqlem17 12845 intopsn 13314 sgrp1 13358 sgrppropd 13360 issubg 13624 nmzsubg 13661 conjnmzb 13731 srg1zr 13864 ring1 13936 issubrg 14098 znf1o 14528 znleval 14530 znunit 14536 elmopn 15033 metss 15081 comet 15086 xmetxp 15094 limcmpted 15250 cnlimc 15259 lgsneg 15616 lgsne0 15630 lgsprme0 15634 lgsquadlem1 15669 lgsquadlem2 15670 2lgs 15696 2lgsoddprm 15705 edg0iedg0g 15777 wrdupgren 15807 wrdumgren 15817 |
| Copyright terms: Public domain | W3C validator |