Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitrd | Unicode version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
Ref | Expression |
---|---|
3bitrd.1 | |
3bitrd.2 | |
3bitrd.3 |
Ref | Expression |
---|---|
3bitrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitrd.1 | . . 3 | |
2 | 3bitrd.2 | . . 3 | |
3 | 1, 2 | bitrd 188 | . 2 |
4 | 3bitrd.3 | . 2 | |
5 | 3, 4 | bitrd 188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sbceqal 3016 sbcnel12g 3072 elxp4 5108 elxp5 5109 f1eq123d 5445 foeq123d 5446 f1oeq123d 5447 fnmptfvd 5612 ofrfval 6081 eloprabi 6187 fnmpoovd 6206 smoeq 6281 ecidg 6589 ixpsnval 6691 enqbreq2 7331 ltanqg 7374 caucvgprprlemexb 7681 caucvgsrlemgt1 7769 caucvgsrlemoffres 7774 ltrennb 7828 apneg 8542 mulext1 8543 apdivmuld 8743 ltdiv23 8822 lediv23 8823 halfpos 9123 addltmul 9128 div4p1lem1div2 9145 ztri3or 9269 supminfex 9570 iccf1o 9975 fzshftral 10078 fzoshftral 10208 2tnp1ge0ge0 10271 fihashen1 10747 seq3coll 10790 cjap 10883 negfi 11204 tanaddaplem 11714 dvdssub 11813 addmodlteqALT 11832 dvdsmod 11835 oddp1even 11848 nn0o1gt2 11877 nn0oddm1d2 11881 infssuzex 11917 cncongr1 12070 cncongr2 12071 intopsn 12661 sgrp1 12691 srg1zr 12976 ring1 13041 elmopn 13526 metss 13574 comet 13579 xmetxp 13587 limcmpted 13712 cnlimc 13721 lgsneg 14005 lgsne0 14019 lgsprme0 14023 |
Copyright terms: Public domain | W3C validator |