![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitrd | Unicode version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
Ref | Expression |
---|---|
3bitrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitrd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitrd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitrd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitrd 188 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitrd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitrd 188 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sbceqal 3041 sbcnel12g 3097 elxp4 5153 elxp5 5154 f1eq123d 5492 foeq123d 5493 f1oeq123d 5494 fnmptfvd 5662 ofrfval 6139 eloprabi 6249 fnmpoovd 6268 smoeq 6343 ecidg 6653 ixpsnval 6755 enqbreq2 7417 ltanqg 7460 caucvgprprlemexb 7767 caucvgsrlemgt1 7855 caucvgsrlemoffres 7860 ltrennb 7914 apneg 8630 mulext1 8631 apdivmuld 8832 ltdiv23 8911 lediv23 8912 halfpos 9213 addltmul 9219 div4p1lem1div2 9236 ztri3or 9360 supminfex 9662 iccf1o 10070 fzshftral 10174 fzoshftral 10305 2tnp1ge0ge0 10370 fihashen1 10870 seq3coll 10913 cjap 11050 negfi 11371 tanaddaplem 11881 dvdssub 11981 addmodlteqALT 12001 dvdsmod 12004 oddp1even 12017 nn0o1gt2 12046 nn0oddm1d2 12050 infssuzex 12086 cncongr1 12241 cncongr2 12242 4sqlem11 12539 4sqlem17 12545 intopsn 12950 sgrp1 12994 sgrppropd 12996 issubg 13243 nmzsubg 13280 conjnmzb 13350 srg1zr 13483 ring1 13555 issubrg 13717 znf1o 14139 znleval 14141 znunit 14147 elmopn 14614 metss 14662 comet 14667 xmetxp 14675 limcmpted 14817 cnlimc 14826 lgsneg 15140 lgsne0 15154 lgsprme0 15158 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |