Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitrd | Unicode version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
Ref | Expression |
---|---|
3bitrd.1 | |
3bitrd.2 | |
3bitrd.3 |
Ref | Expression |
---|---|
3bitrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitrd.1 | . . 3 | |
2 | 3bitrd.2 | . . 3 | |
3 | 1, 2 | bitrd 187 | . 2 |
4 | 3bitrd.3 | . 2 | |
5 | 3, 4 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sbceqal 3010 sbcnel12g 3066 elxp4 5098 elxp5 5099 f1eq123d 5435 foeq123d 5436 f1oeq123d 5437 fnmptfvd 5600 ofrfval 6069 eloprabi 6175 fnmpoovd 6194 smoeq 6269 ecidg 6577 ixpsnval 6679 enqbreq2 7319 ltanqg 7362 caucvgprprlemexb 7669 caucvgsrlemgt1 7757 caucvgsrlemoffres 7762 ltrennb 7816 apneg 8530 mulext1 8531 apdivmuld 8730 ltdiv23 8808 lediv23 8809 halfpos 9109 addltmul 9114 div4p1lem1div2 9131 ztri3or 9255 supminfex 9556 iccf1o 9961 fzshftral 10064 fzoshftral 10194 2tnp1ge0ge0 10257 fihashen1 10734 seq3coll 10777 cjap 10870 negfi 11191 tanaddaplem 11701 dvdssub 11800 addmodlteqALT 11819 dvdsmod 11822 oddp1even 11835 nn0o1gt2 11864 nn0oddm1d2 11868 infssuzex 11904 cncongr1 12057 cncongr2 12058 intopsn 12621 sgrp1 12651 elmopn 13240 metss 13288 comet 13293 xmetxp 13301 limcmpted 13426 cnlimc 13435 lgsneg 13719 lgsne0 13733 lgsprme0 13737 |
Copyright terms: Public domain | W3C validator |