![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitrd | Unicode version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
Ref | Expression |
---|---|
3bitrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitrd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitrd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitrd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitrd 188 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitrd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitrd 188 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sbceqal 3042 sbcnel12g 3098 elxp4 5154 elxp5 5155 f1eq123d 5493 foeq123d 5494 f1oeq123d 5495 fnmptfvd 5663 ofrfval 6141 eloprabi 6251 fnmpoovd 6270 smoeq 6345 ecidg 6655 ixpsnval 6757 enqbreq2 7419 ltanqg 7462 caucvgprprlemexb 7769 caucvgsrlemgt1 7857 caucvgsrlemoffres 7862 ltrennb 7916 apneg 8632 mulext1 8633 apdivmuld 8834 ltdiv23 8913 lediv23 8914 halfpos 9216 addltmul 9222 div4p1lem1div2 9239 ztri3or 9363 supminfex 9665 iccf1o 10073 fzshftral 10177 fzoshftral 10308 2tnp1ge0ge0 10373 fihashen1 10873 seq3coll 10916 cjap 11053 negfi 11374 tanaddaplem 11884 dvdssub 11984 addmodlteqALT 12004 dvdsmod 12007 oddp1even 12020 nn0o1gt2 12049 nn0oddm1d2 12053 infssuzex 12089 cncongr1 12244 cncongr2 12245 4sqlem11 12542 4sqlem17 12548 intopsn 12953 sgrp1 12997 sgrppropd 12999 issubg 13246 nmzsubg 13283 conjnmzb 13353 srg1zr 13486 ring1 13558 issubrg 13720 znf1o 14150 znleval 14152 znunit 14158 elmopn 14625 metss 14673 comet 14678 xmetxp 14686 limcmpted 14842 cnlimc 14851 lgsneg 15181 lgsne0 15195 lgsprme0 15199 lgsquadlem1 15234 lgsquadlem2 15235 2lgs 15261 2lgsoddprm 15270 |
Copyright terms: Public domain | W3C validator |