| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitrd | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3bitrd.1 |
|
| 3bitrd.2 |
|
| 3bitrd.3 |
|
| Ref | Expression |
|---|---|
| 3bitrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitrd.1 |
. . 3
| |
| 2 | 3bitrd.2 |
. . 3
| |
| 3 | 1, 2 | bitrd 188 |
. 2
|
| 4 | 3bitrd.3 |
. 2
| |
| 5 | 3, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sbceqal 3054 sbcnel12g 3110 elxp4 5170 elxp5 5171 f1eq123d 5514 foeq123d 5515 f1oeq123d 5516 fnmptfvd 5684 ofrfval 6167 eloprabi 6282 fnmpoovd 6301 smoeq 6376 ecidg 6686 ixpsnval 6788 enqbreq2 7470 ltanqg 7513 caucvgprprlemexb 7820 caucvgsrlemgt1 7908 caucvgsrlemoffres 7913 ltrennb 7967 apneg 8684 mulext1 8685 apdivmuld 8886 ltdiv23 8965 lediv23 8966 halfpos 9268 addltmul 9274 div4p1lem1div2 9291 ztri3or 9415 supminfex 9718 iccf1o 10126 fzshftral 10230 fzoshftral 10367 infssuzex 10376 2tnp1ge0ge0 10444 fihashen1 10944 seq3coll 10987 s111 11085 swrdspsleq 11120 cjap 11217 negfi 11539 tanaddaplem 12049 dvdssub 12149 addmodlteqALT 12170 dvdsmod 12173 oddp1even 12187 nn0o1gt2 12216 nn0oddm1d2 12220 bitscmp 12269 cncongr1 12425 cncongr2 12426 4sqlem11 12724 4sqlem17 12730 intopsn 13199 sgrp1 13243 sgrppropd 13245 issubg 13509 nmzsubg 13546 conjnmzb 13616 srg1zr 13749 ring1 13821 issubrg 13983 znf1o 14413 znleval 14415 znunit 14421 elmopn 14918 metss 14966 comet 14971 xmetxp 14979 limcmpted 15135 cnlimc 15144 lgsneg 15501 lgsne0 15515 lgsprme0 15519 lgsquadlem1 15554 lgsquadlem2 15555 2lgs 15581 2lgsoddprm 15590 |
| Copyright terms: Public domain | W3C validator |