| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2d | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 |
|
| 3bitr2d.2 |
|
| 3bitr2d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 |
. . 3
| |
| 2 | 3bitr2d.2 |
. . 3
| |
| 3 | 1, 2 | bitr4d 191 |
. 2
|
| 4 | 3bitr2d.3 |
. 2
| |
| 5 | 3, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsralt 2799 frecsuclem 6492 indpi 7455 cauappcvgprlemladdru 7769 prsrlt 7900 lesub2 8530 ltsub2 8532 rec11ap 8783 avglt1 9276 rpnegap 9808 modqmuladdnn0 10513 expap0 10714 swrdspsleq 11120 2shfti 11142 mulreap 11175 minmax 11541 lemininf 11545 xrminmax 11576 xrlemininf 11582 modremain 12240 nnwosdc 12360 nn0seqcvgd 12363 divgcdcoprm0 12423 ismgmid 13209 grpsubeq0 13418 grpsubadd 13420 eqg0el 13565 isunitd 13868 lsslss 14143 isridlrng 14244 zndvds 14411 znleval 14415 isxmet2d 14820 xblss2 14877 neibl 14963 ellimc3apf 15132 logbgt0b 15438 lgsne0 15515 lgsabs1 15516 lgsquadlem1 15554 m1lgs 15562 iswomninnlem 15988 |
| Copyright terms: Public domain | W3C validator |