| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2d | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 |
|
| 3bitr2d.2 |
|
| 3bitr2d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 |
. . 3
| |
| 2 | 3bitr2d.2 |
. . 3
| |
| 3 | 1, 2 | bitr4d 191 |
. 2
|
| 4 | 3bitr2d.3 |
. 2
| |
| 5 | 3, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsralt 2798 frecsuclem 6491 indpi 7454 cauappcvgprlemladdru 7768 prsrlt 7899 lesub2 8529 ltsub2 8531 rec11ap 8782 avglt1 9275 rpnegap 9807 modqmuladdnn0 10511 expap0 10712 2shfti 11084 mulreap 11117 minmax 11483 lemininf 11487 xrminmax 11518 xrlemininf 11524 modremain 12182 nnwosdc 12302 nn0seqcvgd 12305 divgcdcoprm0 12365 ismgmid 13151 grpsubeq0 13360 grpsubadd 13362 eqg0el 13507 isunitd 13810 lsslss 14085 isridlrng 14186 zndvds 14353 znleval 14357 isxmet2d 14762 xblss2 14819 neibl 14905 ellimc3apf 15074 logbgt0b 15380 lgsne0 15457 lgsabs1 15458 lgsquadlem1 15496 m1lgs 15504 iswomninnlem 15921 |
| Copyright terms: Public domain | W3C validator |