| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2d | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 |
|
| 3bitr2d.2 |
|
| 3bitr2d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 |
. . 3
| |
| 2 | 3bitr2d.2 |
. . 3
| |
| 3 | 1, 2 | bitr4d 191 |
. 2
|
| 4 | 3bitr2d.3 |
. 2
| |
| 5 | 3, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsralt 2827 frecsuclem 6550 indpi 7525 cauappcvgprlemladdru 7839 prsrlt 7970 lesub2 8600 ltsub2 8602 rec11ap 8853 avglt1 9346 rpnegap 9878 modqmuladdnn0 10585 expap0 10786 swrdspsleq 11194 2shfti 11337 mulreap 11370 minmax 11736 lemininf 11740 xrminmax 11771 xrlemininf 11777 modremain 12435 nnwosdc 12555 nn0seqcvgd 12558 divgcdcoprm0 12618 ismgmid 13405 grpsubeq0 13614 grpsubadd 13616 eqg0el 13761 isunitd 14064 lsslss 14339 isridlrng 14440 zndvds 14607 znleval 14611 isxmet2d 15016 xblss2 15073 neibl 15159 ellimc3apf 15328 logbgt0b 15634 lgsne0 15711 lgsabs1 15712 lgsquadlem1 15750 m1lgs 15758 iswomninnlem 16376 |
| Copyright terms: Public domain | W3C validator |