Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr2d | Unicode version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2d.1 | |
3bitr2d.2 | |
3bitr2d.3 |
Ref | Expression |
---|---|
3bitr2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2d.1 | . . 3 | |
2 | 3bitr2d.2 | . . 3 | |
3 | 1, 2 | bitr4d 190 | . 2 |
4 | 3bitr2d.3 | . 2 | |
5 | 3, 4 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ceqsralt 2739 frecsuclem 6350 indpi 7256 cauappcvgprlemladdru 7570 prsrlt 7701 lesub2 8326 ltsub2 8328 rec11ap 8577 avglt1 9065 rpnegap 9586 modqmuladdnn0 10260 expap0 10442 2shfti 10724 mulreap 10757 minmax 11122 lemininf 11126 xrminmax 11155 xrlemininf 11161 modremain 11812 nn0seqcvgd 11909 divgcdcoprm0 11969 isxmet2d 12719 xblss2 12776 neibl 12862 ellimc3apf 13000 logbgt0b 13254 iswomninnlem 13591 |
Copyright terms: Public domain | W3C validator |