![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr2d | Unicode version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr2d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr2d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr2d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitr4d 191 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitr2d.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitrd 188 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ceqsralt 2766 frecsuclem 6410 indpi 7344 cauappcvgprlemladdru 7658 prsrlt 7789 lesub2 8417 ltsub2 8419 rec11ap 8670 avglt1 9160 rpnegap 9689 modqmuladdnn0 10371 expap0 10553 2shfti 10843 mulreap 10876 minmax 11241 lemininf 11245 xrminmax 11276 xrlemininf 11282 modremain 11937 nn0seqcvgd 12044 divgcdcoprm0 12104 ismgmid 12802 grpsubeq0 12962 grpsubadd 12964 isunitd 13281 lsslss 13474 isxmet2d 13988 xblss2 14045 neibl 14131 ellimc3apf 14269 logbgt0b 14524 lgsne0 14579 lgsabs1 14580 m1lgs 14592 iswomninnlem 14937 |
Copyright terms: Public domain | W3C validator |