| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2d | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 |
|
| 3bitr2d.2 |
|
| 3bitr2d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 |
. . 3
| |
| 2 | 3bitr2d.2 |
. . 3
| |
| 3 | 1, 2 | bitr4d 191 |
. 2
|
| 4 | 3bitr2d.3 |
. 2
| |
| 5 | 3, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsralt 2790 frecsuclem 6466 indpi 7412 cauappcvgprlemladdru 7726 prsrlt 7857 lesub2 8487 ltsub2 8489 rec11ap 8740 avglt1 9233 rpnegap 9764 modqmuladdnn0 10463 expap0 10664 2shfti 10999 mulreap 11032 minmax 11398 lemininf 11402 xrminmax 11433 xrlemininf 11439 modremain 12097 nnwosdc 12217 nn0seqcvgd 12220 divgcdcoprm0 12280 ismgmid 13046 grpsubeq0 13244 grpsubadd 13246 eqg0el 13385 isunitd 13688 lsslss 13963 isridlrng 14064 zndvds 14231 znleval 14235 isxmet2d 14610 xblss2 14667 neibl 14753 ellimc3apf 14922 logbgt0b 15228 lgsne0 15305 lgsabs1 15306 lgsquadlem1 15344 m1lgs 15352 iswomninnlem 15720 |
| Copyright terms: Public domain | W3C validator |