| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2d | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 |
|
| 3bitr2d.2 |
|
| 3bitr2d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 |
. . 3
| |
| 2 | 3bitr2d.2 |
. . 3
| |
| 3 | 1, 2 | bitr4d 191 |
. 2
|
| 4 | 3bitr2d.3 |
. 2
| |
| 5 | 3, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsralt 2801 frecsuclem 6510 indpi 7485 cauappcvgprlemladdru 7799 prsrlt 7930 lesub2 8560 ltsub2 8562 rec11ap 8813 avglt1 9306 rpnegap 9838 modqmuladdnn0 10545 expap0 10746 swrdspsleq 11153 2shfti 11227 mulreap 11260 minmax 11626 lemininf 11630 xrminmax 11661 xrlemininf 11667 modremain 12325 nnwosdc 12445 nn0seqcvgd 12448 divgcdcoprm0 12508 ismgmid 13294 grpsubeq0 13503 grpsubadd 13505 eqg0el 13650 isunitd 13953 lsslss 14228 isridlrng 14329 zndvds 14496 znleval 14500 isxmet2d 14905 xblss2 14962 neibl 15048 ellimc3apf 15217 logbgt0b 15523 lgsne0 15600 lgsabs1 15601 lgsquadlem1 15639 m1lgs 15647 iswomninnlem 16160 |
| Copyright terms: Public domain | W3C validator |