![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr2d | Unicode version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr2d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr2d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr2d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitr4d 191 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitr2d.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitrd 188 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ceqsralt 2787 frecsuclem 6459 indpi 7402 cauappcvgprlemladdru 7716 prsrlt 7847 lesub2 8476 ltsub2 8478 rec11ap 8729 avglt1 9221 rpnegap 9752 modqmuladdnn0 10439 expap0 10640 2shfti 10975 mulreap 11008 minmax 11373 lemininf 11377 xrminmax 11408 xrlemininf 11414 modremain 12070 nnwosdc 12176 nn0seqcvgd 12179 divgcdcoprm0 12239 ismgmid 12960 grpsubeq0 13158 grpsubadd 13160 eqg0el 13299 isunitd 13602 lsslss 13877 isridlrng 13978 zndvds 14137 znleval 14141 isxmet2d 14516 xblss2 14573 neibl 14659 ellimc3apf 14814 logbgt0b 15098 lgsne0 15154 lgsabs1 15155 lgsquadlem1 15191 m1lgs 15192 iswomninnlem 15539 |
Copyright terms: Public domain | W3C validator |