| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2d | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 |
|
| 3bitr2d.2 |
|
| 3bitr2d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 |
. . 3
| |
| 2 | 3bitr2d.2 |
. . 3
| |
| 3 | 1, 2 | bitr4d 191 |
. 2
|
| 4 | 3bitr2d.3 |
. 2
| |
| 5 | 3, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsralt 2790 frecsuclem 6464 indpi 7409 cauappcvgprlemladdru 7723 prsrlt 7854 lesub2 8484 ltsub2 8486 rec11ap 8737 avglt1 9230 rpnegap 9761 modqmuladdnn0 10460 expap0 10661 2shfti 10996 mulreap 11029 minmax 11395 lemininf 11399 xrminmax 11430 xrlemininf 11436 modremain 12094 nnwosdc 12206 nn0seqcvgd 12209 divgcdcoprm0 12269 ismgmid 13020 grpsubeq0 13218 grpsubadd 13220 eqg0el 13359 isunitd 13662 lsslss 13937 isridlrng 14038 zndvds 14205 znleval 14209 isxmet2d 14584 xblss2 14641 neibl 14727 ellimc3apf 14896 logbgt0b 15202 lgsne0 15279 lgsabs1 15280 lgsquadlem1 15318 m1lgs 15326 iswomninnlem 15693 |
| Copyright terms: Public domain | W3C validator |