ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr2d Unicode version

Theorem 3bitr2d 215
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr2d.1  |-  ( ph  ->  ( ps  <->  ch )
)
3bitr2d.2  |-  ( ph  ->  ( th  <->  ch )
)
3bitr2d.3  |-  ( ph  ->  ( th  <->  ta )
)
Assertion
Ref Expression
3bitr2d  |-  ( ph  ->  ( ps  <->  ta )
)

Proof of Theorem 3bitr2d
StepHypRef Expression
1 3bitr2d.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
2 3bitr2d.2 . . 3  |-  ( ph  ->  ( th  <->  ch )
)
31, 2bitr4d 190 . 2  |-  ( ph  ->  ( ps  <->  th )
)
4 3bitr2d.3 . 2  |-  ( ph  ->  ( th  <->  ta )
)
53, 4bitrd 187 1  |-  ( ph  ->  ( ps  <->  ta )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ceqsralt  2739  frecsuclem  6350  indpi  7256  cauappcvgprlemladdru  7570  prsrlt  7701  lesub2  8326  ltsub2  8328  rec11ap  8577  avglt1  9065  rpnegap  9586  modqmuladdnn0  10260  expap0  10442  2shfti  10724  mulreap  10757  minmax  11122  lemininf  11126  xrminmax  11155  xrlemininf  11161  modremain  11812  nn0seqcvgd  11909  divgcdcoprm0  11969  isxmet2d  12719  xblss2  12776  neibl  12862  ellimc3apf  13000  logbgt0b  13254  iswomninnlem  13591
  Copyright terms: Public domain W3C validator