| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2d | Unicode version | ||
| Description: Deduction form of bitr2i 185. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 |
|
| bitr2d.2 |
|
| Ref | Expression |
|---|---|
| bitr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 |
. . 3
| |
| 2 | bitr2d.2 |
. . 3
| |
| 3 | 1, 2 | bitrd 188 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr2rd 217 pm5.18dc 884 drex1 1812 elrnmpt1 4917 xpopth 6234 sbcopeq1a 6245 ltnnnq 7490 ltaddsub 8463 leaddsub 8465 posdif 8482 lesub1 8483 ltsub1 8485 lesub0 8506 possumd 8596 subap0 8670 ltdivmul 8903 ledivmul 8904 zlem1lt 9382 zltlem1 9383 negelrp 9762 fzrev2 10160 fz1sbc 10171 elfzp1b 10172 qtri3or 10330 sumsqeq0 10710 sqrtle 11201 sqrtlt 11202 absgt0ap 11264 iser3shft 11511 dvdssubr 12004 gcdn0gt0 12145 divgcdcoprmex 12270 pcfac 12519 gsumfzval 13034 lmbrf 14451 logge0b 15126 loggt0b 15127 logle1b 15128 loglt1b 15129 lgsne0 15279 lgsprme0 15283 |
| Copyright terms: Public domain | W3C validator |