| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2d | Unicode version | ||
| Description: Deduction form of bitr2i 185. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 |
|
| bitr2d.2 |
|
| Ref | Expression |
|---|---|
| bitr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 |
. . 3
| |
| 2 | bitr2d.2 |
. . 3
| |
| 3 | 1, 2 | bitrd 188 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr2rd 217 pm5.18dc 888 drex1 1844 elrnmpt1 4971 xpopth 6312 sbcopeq1a 6323 ltnnnq 7598 ltaddsub 8571 leaddsub 8573 posdif 8590 lesub1 8591 ltsub1 8593 lesub0 8614 possumd 8704 subap0 8778 ltdivmul 9011 ledivmul 9012 zlem1lt 9491 zltlem1 9492 negelrp 9871 fzrev2 10269 fz1sbc 10280 elfzp1b 10281 qtri3or 10447 sumsqeq0 10827 sqrtle 11533 sqrtlt 11534 absgt0ap 11596 iser3shft 11843 dvdssubr 12336 gcdn0gt0 12485 divgcdcoprmex 12610 pcfac 12859 gsumfzval 13410 lmbrf 14874 logge0b 15549 loggt0b 15550 logle1b 15551 loglt1b 15552 lgsne0 15702 lgsprme0 15706 |
| Copyright terms: Public domain | W3C validator |