Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr2d | Unicode version |
Description: Deduction form of bitr2i 184. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
bitr2d.1 | |
bitr2d.2 |
Ref | Expression |
---|---|
bitr2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2d.1 | . . 3 | |
2 | bitr2d.2 | . . 3 | |
3 | 1, 2 | bitrd 187 | . 2 |
4 | 3 | bicomd 140 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitrrd 214 3bitr2rd 216 pm5.18dc 869 drex1 1775 elrnmpt1 4830 xpopth 6114 sbcopeq1a 6125 ltnnnq 7322 ltaddsub 8290 leaddsub 8292 posdif 8309 lesub1 8310 ltsub1 8312 lesub0 8333 possumd 8423 subap0 8497 ltdivmul 8726 ledivmul 8727 zlem1lt 9202 zltlem1 9203 negelrp 9572 fzrev2 9965 fz1sbc 9976 elfzp1b 9977 qtri3or 10120 sumsqeq0 10475 sqrtle 10913 sqrtlt 10914 absgt0ap 10976 iser3shft 11220 dvdssubr 11706 gcdn0gt0 11833 divgcdcoprmex 11950 lmbrf 12554 logge0b 13150 loggt0b 13151 logle1b 13152 loglt1b 13153 |
Copyright terms: Public domain | W3C validator |