| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2d | Unicode version | ||
| Description: Deduction form of bitr2i 185. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 |
|
| bitr2d.2 |
|
| Ref | Expression |
|---|---|
| bitr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 |
. . 3
| |
| 2 | bitr2d.2 |
. . 3
| |
| 3 | 1, 2 | bitrd 188 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr2rd 217 pm5.18dc 885 drex1 1822 elrnmpt1 4937 xpopth 6274 sbcopeq1a 6285 ltnnnq 7551 ltaddsub 8524 leaddsub 8526 posdif 8543 lesub1 8544 ltsub1 8546 lesub0 8567 possumd 8657 subap0 8731 ltdivmul 8964 ledivmul 8965 zlem1lt 9444 zltlem1 9445 negelrp 9824 fzrev2 10222 fz1sbc 10233 elfzp1b 10234 qtri3or 10400 sumsqeq0 10780 sqrtle 11417 sqrtlt 11418 absgt0ap 11480 iser3shft 11727 dvdssubr 12220 gcdn0gt0 12369 divgcdcoprmex 12494 pcfac 12743 gsumfzval 13293 lmbrf 14757 logge0b 15432 loggt0b 15433 logle1b 15434 loglt1b 15435 lgsne0 15585 lgsprme0 15589 |
| Copyright terms: Public domain | W3C validator |