| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2d | Unicode version | ||
| Description: Deduction form of bitr2i 185. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 |
|
| bitr2d.2 |
|
| Ref | Expression |
|---|---|
| bitr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 |
. . 3
| |
| 2 | bitr2d.2 |
. . 3
| |
| 3 | 1, 2 | bitrd 188 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr2rd 217 pm5.18dc 884 drex1 1812 elrnmpt1 4918 xpopth 6243 sbcopeq1a 6254 ltnnnq 7507 ltaddsub 8480 leaddsub 8482 posdif 8499 lesub1 8500 ltsub1 8502 lesub0 8523 possumd 8613 subap0 8687 ltdivmul 8920 ledivmul 8921 zlem1lt 9399 zltlem1 9400 negelrp 9779 fzrev2 10177 fz1sbc 10188 elfzp1b 10189 qtri3or 10347 sumsqeq0 10727 sqrtle 11218 sqrtlt 11219 absgt0ap 11281 iser3shft 11528 dvdssubr 12021 gcdn0gt0 12170 divgcdcoprmex 12295 pcfac 12544 gsumfzval 13093 lmbrf 14535 logge0b 15210 loggt0b 15211 logle1b 15212 loglt1b 15213 lgsne0 15363 lgsprme0 15367 |
| Copyright terms: Public domain | W3C validator |