ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divfl0 Unicode version

Theorem divfl0 9910
Description: The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
divfl0  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  <  B  <->  ( |_ `  ( A  /  B ) )  =  0 ) )

Proof of Theorem divfl0
StepHypRef Expression
1 nn0z 8926 . . . . . 6  |-  ( A  e.  NN0  ->  A  e.  ZZ )
2 znq 9266 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B
)  e.  QQ )
31, 2sylan 279 . . . . 5  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  /  B
)  e.  QQ )
4 qcn 9276 . . . . 5  |-  ( ( A  /  B )  e.  QQ  ->  ( A  /  B )  e.  CC )
5 addid2 7772 . . . . . 6  |-  ( ( A  /  B )  e.  CC  ->  (
0  +  ( A  /  B ) )  =  ( A  /  B ) )
65eqcomd 2105 . . . . 5  |-  ( ( A  /  B )  e.  CC  ->  ( A  /  B )  =  ( 0  +  ( A  /  B ) ) )
73, 4, 63syl 17 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  /  B
)  =  ( 0  +  ( A  /  B ) ) )
87fveq2d 5357 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( |_ `  ( A  /  B ) )  =  ( |_ `  ( 0  +  ( A  /  B ) ) ) )
98eqeq1d 2108 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( ( |_ `  ( A  /  B
) )  =  0  <-> 
( |_ `  (
0  +  ( A  /  B ) ) )  =  0 ) )
10 0z 8917 . . 3  |-  0  e.  ZZ
11 flqbi2 9905 . . 3  |-  ( ( 0  e.  ZZ  /\  ( A  /  B
)  e.  QQ )  ->  ( ( |_
`  ( 0  +  ( A  /  B
) ) )  =  0  <->  ( 0  <_ 
( A  /  B
)  /\  ( A  /  B )  <  1
) ) )
1210, 3, 11sylancr 408 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( ( |_ `  ( 0  +  ( A  /  B ) ) )  =  0  <-> 
( 0  <_  ( A  /  B )  /\  ( A  /  B
)  <  1 ) ) )
13 nn0ge0div 8990 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  0  <_  ( A  /  B ) )
1413biantrurd 301 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( ( A  /  B )  <  1  <->  ( 0  <_  ( A  /  B )  /\  ( A  /  B )  <  1 ) ) )
15 nn0re 8838 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
16 nnrp 9300 . . . 4  |-  ( B  e.  NN  ->  B  e.  RR+ )
17 divlt1lt 9358 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  /  B )  <  1  <->  A  <  B ) )
1815, 16, 17syl2an 285 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( ( A  /  B )  <  1  <->  A  <  B ) )
1914, 18bitr3d 189 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( ( 0  <_ 
( A  /  B
)  /\  ( A  /  B )  <  1
)  <->  A  <  B ) )
209, 12, 193bitrrd 214 1  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  <  B  <->  ( |_ `  ( A  /  B ) )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1299    e. wcel 1448   class class class wbr 3875   ` cfv 5059  (class class class)co 5706   CCcc 7498   RRcr 7499   0cc0 7500   1c1 7501    + caddc 7503    < clt 7672    <_ cle 7673    / cdiv 8293   NNcn 8578   NN0cn0 8829   ZZcz 8906   QQcq 9261   RR+crp 9291   |_cfl 9882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-n0 8830  df-z 8907  df-q 9262  df-rp 9292  df-fl 9884
This theorem is referenced by:  fldiv4p1lem1div2  9919
  Copyright terms: Public domain W3C validator