ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srpospr Unicode version

Theorem srpospr 7867
Description: Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
Assertion
Ref Expression
srpospr  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
Distinct variable group:    x, A

Proof of Theorem srpospr
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7811 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 breq2 4038 . . . 4  |-  ( [
<. a ,  b >. ]  ~R  =  A  -> 
( 0R  <R  [ <. a ,  b >. ]  ~R  <->  0R 
<R  A ) )
3 eqeq2 2206 . . . . 5  |-  ( [
<. a ,  b >. ]  ~R  =  A  -> 
( [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  <->  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  A ) )
43reubidv 2681 . . . 4  |-  ( [
<. a ,  b >. ]  ~R  =  A  -> 
( E! x  e. 
P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  <->  E! x  e.  P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  A ) )
52, 4imbi12d 234 . . 3  |-  ( [
<. a ,  b >. ]  ~R  =  A  -> 
( ( 0R  <R  [
<. a ,  b >. ]  ~R  ->  E! x  e.  P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  )  <->  ( 0R  <R  A  ->  E! x  e.  P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  A ) ) )
6 gt0srpr 7832 . . . . . . . 8  |-  ( 0R 
<R  [ <. a ,  b
>. ]  ~R  <->  b  <P  a )
76biimpi 120 . . . . . . 7  |-  ( 0R 
<R  [ <. a ,  b
>. ]  ~R  ->  b  <P  a )
87adantl 277 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  0R  <R  [ <. a ,  b >. ]  ~R  )  ->  b  <P  a
)
9 lteupri 7701 . . . . . 6  |-  ( b 
<P  a  ->  E! x  e.  P.  ( b  +P.  x )  =  a )
108, 9syl 14 . . . . 5  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  0R  <R  [ <. a ,  b >. ]  ~R  )  ->  E! x  e. 
P.  ( b  +P.  x )  =  a )
11 simpr 110 . . . . . . . . 9  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  x  e.  P. )
12 1pr 7638 . . . . . . . . . 10  |-  1P  e.  P.
1312a1i 9 . . . . . . . . 9  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  1P  e.  P. )
14 addclpr 7621 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  +P.  1P )  e.  P. )
1511, 13, 14syl2anc 411 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
x  +P.  1P )  e.  P. )
16 simplll 533 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  a  e.  P. )
17 simpllr 534 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  b  e.  P. )
18 enreceq 7820 . . . . . . . 8  |-  ( ( ( ( x  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( a  e.  P.  /\  b  e.  P. )
)  ->  ( [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  <->  ( (
x  +P.  1P )  +P.  b )  =  ( 1P  +P.  a ) ) )
1915, 13, 16, 17, 18syl22anc 1250 . . . . . . 7  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  ( [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b >. ]  ~R  <->  ( ( x  +P.  1P )  +P.  b )  =  ( 1P  +P.  a
) ) )
20 addcomprg 7662 . . . . . . . . . . . 12  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  +P.  1P )  =  ( 1P  +P.  x ) )
2111, 13, 20syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
x  +P.  1P )  =  ( 1P  +P.  x ) )
2221oveq1d 5940 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( x  +P.  1P )  +P.  b )  =  ( ( 1P  +P.  x )  +P.  b
) )
23 addassprg 7663 . . . . . . . . . . 11  |-  ( ( 1P  e.  P.  /\  x  e.  P.  /\  b  e.  P. )  ->  (
( 1P  +P.  x
)  +P.  b )  =  ( 1P  +P.  ( x  +P.  b ) ) )
2413, 11, 17, 23syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( 1P  +P.  x
)  +P.  b )  =  ( 1P  +P.  ( x  +P.  b ) ) )
2522, 24eqtrd 2229 . . . . . . . . 9  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( x  +P.  1P )  +P.  b )  =  ( 1P  +P.  (
x  +P.  b )
) )
2625eqeq1d 2205 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( ( x  +P.  1P )  +P.  b )  =  ( 1P  +P.  a )  <->  ( 1P  +P.  ( x  +P.  b
) )  =  ( 1P  +P.  a ) ) )
27 addclpr 7621 . . . . . . . . . . 11  |-  ( ( x  e.  P.  /\  b  e.  P. )  ->  ( x  +P.  b
)  e.  P. )
2811, 17, 27syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
x  +P.  b )  e.  P. )
29 addcanprg 7700 . . . . . . . . . 10  |-  ( ( 1P  e.  P.  /\  ( x  +P.  b )  e.  P.  /\  a  e.  P. )  ->  (
( 1P  +P.  (
x  +P.  b )
)  =  ( 1P 
+P.  a )  -> 
( x  +P.  b
)  =  a ) )
3013, 28, 16, 29syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( 1P  +P.  (
x  +P.  b )
)  =  ( 1P 
+P.  a )  -> 
( x  +P.  b
)  =  a ) )
31 oveq2 5933 . . . . . . . . 9  |-  ( ( x  +P.  b )  =  a  ->  ( 1P  +P.  ( x  +P.  b ) )  =  ( 1P  +P.  a
) )
3230, 31impbid1 142 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( 1P  +P.  (
x  +P.  b )
)  =  ( 1P 
+P.  a )  <->  ( x  +P.  b )  =  a ) )
3326, 32bitrd 188 . . . . . . 7  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( ( x  +P.  1P )  +P.  b )  =  ( 1P  +P.  a )  <->  ( x  +P.  b )  =  a ) )
34 addcomprg 7662 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  b  e.  P. )  ->  ( x  +P.  b
)  =  ( b  +P.  x ) )
3511, 17, 34syl2anc 411 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
x  +P.  b )  =  ( b  +P.  x ) )
3635eqeq1d 2205 . . . . . . 7  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( x  +P.  b
)  =  a  <->  ( b  +P.  x )  =  a ) )
3719, 33, 363bitrrd 215 . . . . . 6  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( b  +P.  x
)  =  a  <->  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  ) )
3837reubidva 2680 . . . . 5  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  0R  <R  [ <. a ,  b >. ]  ~R  )  ->  ( E! x  e.  P.  ( b  +P.  x )  =  a  <-> 
E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  ) )
3910, 38mpbid 147 . . . 4  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  0R  <R  [ <. a ,  b >. ]  ~R  )  ->  E! x  e. 
P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  )
4039ex 115 . . 3  |-  ( ( a  e.  P.  /\  b  e.  P. )  ->  ( 0R  <R  [ <. a ,  b >. ]  ~R  ->  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  ) )
411, 5, 40ecoptocl 6690 . 2  |-  ( A  e.  R.  ->  ( 0R  <R  A  ->  E! x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A ) )
4241imp 124 1  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   E!wreu 2477   <.cop 3626   class class class wbr 4034  (class class class)co 5925   [cec 6599   P.cnp 7375   1Pc1p 7376    +P. cpp 7377    <P cltp 7379    ~R cer 7380   R.cnr 7381   0Rc0r 7382    <R cltr 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-iltp 7554  df-enr 7810  df-nr 7811  df-ltr 7814  df-0r 7815
This theorem is referenced by:  prsrriota  7872  caucvgsrlemcl  7873  caucvgsrlemgt1  7879
  Copyright terms: Public domain W3C validator