ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srpospr Unicode version

Theorem srpospr 7773
Description: Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
Assertion
Ref Expression
srpospr  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
Distinct variable group:    x, A

Proof of Theorem srpospr
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7717 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 breq2 4004 . . . 4  |-  ( [
<. a ,  b >. ]  ~R  =  A  -> 
( 0R  <R  [ <. a ,  b >. ]  ~R  <->  0R 
<R  A ) )
3 eqeq2 2187 . . . . 5  |-  ( [
<. a ,  b >. ]  ~R  =  A  -> 
( [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  <->  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  A ) )
43reubidv 2660 . . . 4  |-  ( [
<. a ,  b >. ]  ~R  =  A  -> 
( E! x  e. 
P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  <->  E! x  e.  P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  A ) )
52, 4imbi12d 234 . . 3  |-  ( [
<. a ,  b >. ]  ~R  =  A  -> 
( ( 0R  <R  [
<. a ,  b >. ]  ~R  ->  E! x  e.  P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  )  <->  ( 0R  <R  A  ->  E! x  e.  P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  A ) ) )
6 gt0srpr 7738 . . . . . . . 8  |-  ( 0R 
<R  [ <. a ,  b
>. ]  ~R  <->  b  <P  a )
76biimpi 120 . . . . . . 7  |-  ( 0R 
<R  [ <. a ,  b
>. ]  ~R  ->  b  <P  a )
87adantl 277 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  0R  <R  [ <. a ,  b >. ]  ~R  )  ->  b  <P  a
)
9 lteupri 7607 . . . . . 6  |-  ( b 
<P  a  ->  E! x  e.  P.  ( b  +P.  x )  =  a )
108, 9syl 14 . . . . 5  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  0R  <R  [ <. a ,  b >. ]  ~R  )  ->  E! x  e. 
P.  ( b  +P.  x )  =  a )
11 simpr 110 . . . . . . . . 9  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  x  e.  P. )
12 1pr 7544 . . . . . . . . . 10  |-  1P  e.  P.
1312a1i 9 . . . . . . . . 9  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  1P  e.  P. )
14 addclpr 7527 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  +P.  1P )  e.  P. )
1511, 13, 14syl2anc 411 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
x  +P.  1P )  e.  P. )
16 simplll 533 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  a  e.  P. )
17 simpllr 534 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  b  e.  P. )
18 enreceq 7726 . . . . . . . 8  |-  ( ( ( ( x  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( a  e.  P.  /\  b  e.  P. )
)  ->  ( [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  <->  ( (
x  +P.  1P )  +P.  b )  =  ( 1P  +P.  a ) ) )
1915, 13, 16, 17, 18syl22anc 1239 . . . . . . 7  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  ( [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b >. ]  ~R  <->  ( ( x  +P.  1P )  +P.  b )  =  ( 1P  +P.  a
) ) )
20 addcomprg 7568 . . . . . . . . . . . 12  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  +P.  1P )  =  ( 1P  +P.  x ) )
2111, 13, 20syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
x  +P.  1P )  =  ( 1P  +P.  x ) )
2221oveq1d 5884 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( x  +P.  1P )  +P.  b )  =  ( ( 1P  +P.  x )  +P.  b
) )
23 addassprg 7569 . . . . . . . . . . 11  |-  ( ( 1P  e.  P.  /\  x  e.  P.  /\  b  e.  P. )  ->  (
( 1P  +P.  x
)  +P.  b )  =  ( 1P  +P.  ( x  +P.  b ) ) )
2413, 11, 17, 23syl3anc 1238 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( 1P  +P.  x
)  +P.  b )  =  ( 1P  +P.  ( x  +P.  b ) ) )
2522, 24eqtrd 2210 . . . . . . . . 9  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( x  +P.  1P )  +P.  b )  =  ( 1P  +P.  (
x  +P.  b )
) )
2625eqeq1d 2186 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( ( x  +P.  1P )  +P.  b )  =  ( 1P  +P.  a )  <->  ( 1P  +P.  ( x  +P.  b
) )  =  ( 1P  +P.  a ) ) )
27 addclpr 7527 . . . . . . . . . . 11  |-  ( ( x  e.  P.  /\  b  e.  P. )  ->  ( x  +P.  b
)  e.  P. )
2811, 17, 27syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
x  +P.  b )  e.  P. )
29 addcanprg 7606 . . . . . . . . . 10  |-  ( ( 1P  e.  P.  /\  ( x  +P.  b )  e.  P.  /\  a  e.  P. )  ->  (
( 1P  +P.  (
x  +P.  b )
)  =  ( 1P 
+P.  a )  -> 
( x  +P.  b
)  =  a ) )
3013, 28, 16, 29syl3anc 1238 . . . . . . . . 9  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( 1P  +P.  (
x  +P.  b )
)  =  ( 1P 
+P.  a )  -> 
( x  +P.  b
)  =  a ) )
31 oveq2 5877 . . . . . . . . 9  |-  ( ( x  +P.  b )  =  a  ->  ( 1P  +P.  ( x  +P.  b ) )  =  ( 1P  +P.  a
) )
3230, 31impbid1 142 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( 1P  +P.  (
x  +P.  b )
)  =  ( 1P 
+P.  a )  <->  ( x  +P.  b )  =  a ) )
3326, 32bitrd 188 . . . . . . 7  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( ( x  +P.  1P )  +P.  b )  =  ( 1P  +P.  a )  <->  ( x  +P.  b )  =  a ) )
34 addcomprg 7568 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  b  e.  P. )  ->  ( x  +P.  b
)  =  ( b  +P.  x ) )
3511, 17, 34syl2anc 411 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
x  +P.  b )  =  ( b  +P.  x ) )
3635eqeq1d 2186 . . . . . . 7  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( x  +P.  b
)  =  a  <->  ( b  +P.  x )  =  a ) )
3719, 33, 363bitrrd 215 . . . . . 6  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( b  +P.  x
)  =  a  <->  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  ) )
3837reubidva 2659 . . . . 5  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  0R  <R  [ <. a ,  b >. ]  ~R  )  ->  ( E! x  e.  P.  ( b  +P.  x )  =  a  <-> 
E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  ) )
3910, 38mpbid 147 . . . 4  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  0R  <R  [ <. a ,  b >. ]  ~R  )  ->  E! x  e. 
P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  )
4039ex 115 . . 3  |-  ( ( a  e.  P.  /\  b  e.  P. )  ->  ( 0R  <R  [ <. a ,  b >. ]  ~R  ->  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  ) )
411, 5, 40ecoptocl 6616 . 2  |-  ( A  e.  R.  ->  ( 0R  <R  A  ->  E! x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A ) )
4241imp 124 1  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E!wreu 2457   <.cop 3594   class class class wbr 4000  (class class class)co 5869   [cec 6527   P.cnp 7281   1Pc1p 7282    +P. cpp 7283    <P cltp 7285    ~R cer 7286   R.cnr 7287   0Rc0r 7288    <R cltr 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-plq0 7417  df-mq0 7418  df-inp 7456  df-i1p 7457  df-iplp 7458  df-iltp 7460  df-enr 7716  df-nr 7717  df-ltr 7720  df-0r 7721
This theorem is referenced by:  prsrriota  7778  caucvgsrlemcl  7779  caucvgsrlemgt1  7785
  Copyright terms: Public domain W3C validator