Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cjreb | Unicode version |
Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
cjreb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recl 10730 | . . . . . 6 | |
2 | 1 | recnd 7885 | . . . . 5 |
3 | ax-icn 7806 | . . . . . 6 | |
4 | imcl 10731 | . . . . . . 7 | |
5 | 4 | recnd 7885 | . . . . . 6 |
6 | mulcl 7838 | . . . . . 6 | |
7 | 3, 5, 6 | sylancr 411 | . . . . 5 |
8 | 2, 7 | negsubd 8171 | . . . 4 |
9 | mulneg2 8250 | . . . . . 6 | |
10 | 3, 5, 9 | sylancr 411 | . . . . 5 |
11 | 10 | oveq2d 5830 | . . . 4 |
12 | remim 10737 | . . . 4 | |
13 | 8, 11, 12 | 3eqtr4rd 2198 | . . 3 |
14 | replim 10736 | . . 3 | |
15 | 13, 14 | eqeq12d 2169 | . 2 |
16 | 5 | negcld 8152 | . . . 4 |
17 | mulcl 7838 | . . . 4 | |
18 | 3, 16, 17 | sylancr 411 | . . 3 |
19 | 2, 18, 7 | addcand 8038 | . 2 |
20 | eqcom 2156 | . . . 4 | |
21 | 5 | eqnegd 8585 | . . . 4 |
22 | 20, 21 | syl5bb 191 | . . 3 |
23 | iap0 9035 | . . . . . 6 # | |
24 | 3, 23 | pm3.2i 270 | . . . . 5 # |
25 | 24 | a1i 9 | . . . 4 # |
26 | mulcanap 8518 | . . . 4 # | |
27 | 16, 5, 25, 26 | syl3anc 1217 | . . 3 |
28 | reim0b 10739 | . . 3 | |
29 | 22, 27, 28 | 3bitr4d 219 | . 2 |
30 | 15, 19, 29 | 3bitrrd 214 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wcel 2125 class class class wbr 3961 cfv 5163 (class class class)co 5814 cc 7709 cr 7710 cc0 7711 ci 7713 caddc 7714 cmul 7716 cmin 8025 cneg 8026 # cap 8435 ccj 10716 cre 10717 cim 10718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-po 4251 df-iso 4252 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-2 8871 df-cj 10719 df-re 10720 df-im 10721 |
This theorem is referenced by: cjre 10759 cjmulrcl 10764 cjrebi 10795 cjrebd 10823 |
Copyright terms: Public domain | W3C validator |