ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrest2 Unicode version

Theorem cnrest2 12876
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Hankins, 10-Jul-2009.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnrest2  |-  ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  ->  ( F  e.  ( J  Cn  K )  <->  F  e.  ( J  Cn  ( Kt  B ) ) ) )

Proof of Theorem cnrest2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 12841 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
21a1i 9 . . 3  |-  ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  ->  ( F  e.  ( J  Cn  K )  ->  J  e.  Top ) )
3 eqid 2165 . . . . . . . 8  |-  U. J  =  U. J
4 eqid 2165 . . . . . . . 8  |-  U. K  =  U. K
53, 4cnf 12844 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
65ffnd 5338 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  F  Fn  U. J )
76a1i 9 . . . . 5  |-  ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  ->  ( F  e.  ( J  Cn  K )  ->  F  Fn  U. J ) )
8 simp2 988 . . . . 5  |-  ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  ->  ran  F 
C_  B )
97, 8jctird 315 . . . 4  |-  ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  ->  ( F  e.  ( J  Cn  K )  ->  ( F  Fn  U. J  /\  ran  F  C_  B )
) )
10 df-f 5192 . . . 4  |-  ( F : U. J --> B  <->  ( F  Fn  U. J  /\  ran  F 
C_  B ) )
119, 10syl6ibr 161 . . 3  |-  ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  ->  ( F  e.  ( J  Cn  K )  ->  F : U. J --> B ) )
122, 11jcad 305 . 2  |-  ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  ->  ( F  e.  ( J  Cn  K )  ->  ( J  e.  Top  /\  F : U. J --> B ) ) )
13 cntop1 12841 . . . . 5  |-  ( F  e.  ( J  Cn  ( Kt  B ) )  ->  J  e.  Top )
1413adantl 275 . . . 4  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  F  e.  ( J  Cn  ( Kt  B ) ) )  ->  J  e.  Top )
153toptopon 12656 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
1614, 15sylib 121 . . . . 5  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  F  e.  ( J  Cn  ( Kt  B ) ) )  ->  J  e.  (TopOn `  U. J ) )
17 resttopon 12811 . . . . . . 7  |-  ( ( K  e.  (TopOn `  Y )  /\  B  C_  Y )  ->  ( Kt  B )  e.  (TopOn `  B ) )
18173adant2 1006 . . . . . 6  |-  ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  ->  ( Kt  B )  e.  (TopOn `  B ) )
1918adantr 274 . . . . 5  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  F  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( Kt  B )  e.  (TopOn `  B
) )
20 simpr 109 . . . . 5  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  F  e.  ( J  Cn  ( Kt  B ) ) )  ->  F  e.  ( J  Cn  ( Kt  B ) ) )
21 cnf2 12845 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  ( Kt  B )  e.  (TopOn `  B )  /\  F  e.  ( J  Cn  ( Kt  B ) ) )  ->  F : U. J
--> B )
2216, 19, 20, 21syl3anc 1228 . . . 4  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  F  e.  ( J  Cn  ( Kt  B ) ) )  ->  F : U. J
--> B )
2314, 22jca 304 . . 3  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  F  e.  ( J  Cn  ( Kt  B ) ) )  ->  ( J  e. 
Top  /\  F : U. J --> B ) )
2423ex 114 . 2  |-  ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  ->  ( F  e.  ( J  Cn  ( Kt  B ) )  -> 
( J  e.  Top  /\  F : U. J --> B ) ) )
25 vex 2729 . . . . . . . . 9  |-  x  e. 
_V
2625inex1 4116 . . . . . . . 8  |-  ( x  i^i  B )  e. 
_V
2726a1i 9 . . . . . . 7  |-  ( ( ( ( K  e.  (TopOn `  Y )  /\  ran  F  C_  B  /\  B  C_  Y )  /\  ( J  e. 
Top  /\  F : U. J --> B ) )  /\  x  e.  K
)  ->  ( x  i^i  B )  e.  _V )
28 simpl1 990 . . . . . . . 8  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  K  e.  (TopOn `  Y ) )
29 toponmax 12663 . . . . . . . . . 10  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
3028, 29syl 14 . . . . . . . . 9  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  Y  e.  K )
31 simpl3 992 . . . . . . . . 9  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  B  C_  Y
)
3230, 31ssexd 4122 . . . . . . . 8  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  B  e.  _V )
33 elrest 12563 . . . . . . . 8  |-  ( ( K  e.  (TopOn `  Y )  /\  B  e.  _V )  ->  (
y  e.  ( Kt  B )  <->  E. x  e.  K  y  =  ( x  i^i  B ) ) )
3428, 32, 33syl2anc 409 . . . . . . 7  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  ( y  e.  ( Kt  B )  <->  E. x  e.  K  y  =  ( x  i^i  B ) ) )
35 imaeq2 4942 . . . . . . . . 9  |-  ( y  =  ( x  i^i 
B )  ->  ( `' F " y )  =  ( `' F " ( x  i^i  B
) ) )
3635eleq1d 2235 . . . . . . . 8  |-  ( y  =  ( x  i^i 
B )  ->  (
( `' F "
y )  e.  J  <->  ( `' F " ( x  i^i  B ) )  e.  J ) )
3736adantl 275 . . . . . . 7  |-  ( ( ( ( K  e.  (TopOn `  Y )  /\  ran  F  C_  B  /\  B  C_  Y )  /\  ( J  e. 
Top  /\  F : U. J --> B ) )  /\  y  =  ( x  i^i  B ) )  ->  ( ( `' F " y )  e.  J  <->  ( `' F " ( x  i^i 
B ) )  e.  J ) )
3827, 34, 37ralxfr2d 4442 . . . . . 6  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  ( A. y  e.  ( Kt  B
) ( `' F " y )  e.  J  <->  A. x  e.  K  ( `' F " ( x  i^i  B ) )  e.  J ) )
39 simplrr 526 . . . . . . . . . 10  |-  ( ( ( ( K  e.  (TopOn `  Y )  /\  ran  F  C_  B  /\  B  C_  Y )  /\  ( J  e. 
Top  /\  F : U. J --> B ) )  /\  x  e.  K
)  ->  F : U. J --> B )
40 ffun 5340 . . . . . . . . . 10  |-  ( F : U. J --> B  ->  Fun  F )
41 inpreima 5611 . . . . . . . . . 10  |-  ( Fun 
F  ->  ( `' F " ( x  i^i 
B ) )  =  ( ( `' F " x )  i^i  ( `' F " B ) ) )
4239, 40, 413syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  (TopOn `  Y )  /\  ran  F  C_  B  /\  B  C_  Y )  /\  ( J  e. 
Top  /\  F : U. J --> B ) )  /\  x  e.  K
)  ->  ( `' F " ( x  i^i 
B ) )  =  ( ( `' F " x )  i^i  ( `' F " B ) ) )
43 cnvimass 4967 . . . . . . . . . . . 12  |-  ( `' F " x ) 
C_  dom  F
44 cnvimarndm 4968 . . . . . . . . . . . 12  |-  ( `' F " ran  F
)  =  dom  F
4543, 44sseqtrri 3177 . . . . . . . . . . 11  |-  ( `' F " x ) 
C_  ( `' F " ran  F )
46 simpll2 1027 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  (TopOn `  Y )  /\  ran  F  C_  B  /\  B  C_  Y )  /\  ( J  e. 
Top  /\  F : U. J --> B ) )  /\  x  e.  K
)  ->  ran  F  C_  B )
47 imass2 4980 . . . . . . . . . . . 12  |-  ( ran 
F  C_  B  ->  ( `' F " ran  F
)  C_  ( `' F " B ) )
4846, 47syl 14 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  (TopOn `  Y )  /\  ran  F  C_  B  /\  B  C_  Y )  /\  ( J  e. 
Top  /\  F : U. J --> B ) )  /\  x  e.  K
)  ->  ( `' F " ran  F ) 
C_  ( `' F " B ) )
4945, 48sstrid 3153 . . . . . . . . . 10  |-  ( ( ( ( K  e.  (TopOn `  Y )  /\  ran  F  C_  B  /\  B  C_  Y )  /\  ( J  e. 
Top  /\  F : U. J --> B ) )  /\  x  e.  K
)  ->  ( `' F " x )  C_  ( `' F " B ) )
50 df-ss 3129 . . . . . . . . . 10  |-  ( ( `' F " x ) 
C_  ( `' F " B )  <->  ( ( `' F " x )  i^i  ( `' F " B ) )  =  ( `' F "
x ) )
5149, 50sylib 121 . . . . . . . . 9  |-  ( ( ( ( K  e.  (TopOn `  Y )  /\  ran  F  C_  B  /\  B  C_  Y )  /\  ( J  e. 
Top  /\  F : U. J --> B ) )  /\  x  e.  K
)  ->  ( ( `' F " x )  i^i  ( `' F " B ) )  =  ( `' F "
x ) )
5242, 51eqtrd 2198 . . . . . . . 8  |-  ( ( ( ( K  e.  (TopOn `  Y )  /\  ran  F  C_  B  /\  B  C_  Y )  /\  ( J  e. 
Top  /\  F : U. J --> B ) )  /\  x  e.  K
)  ->  ( `' F " ( x  i^i 
B ) )  =  ( `' F "
x ) )
5352eleq1d 2235 . . . . . . 7  |-  ( ( ( ( K  e.  (TopOn `  Y )  /\  ran  F  C_  B  /\  B  C_  Y )  /\  ( J  e. 
Top  /\  F : U. J --> B ) )  /\  x  e.  K
)  ->  ( ( `' F " ( x  i^i  B ) )  e.  J  <->  ( `' F " x )  e.  J ) )
5453ralbidva 2462 . . . . . 6  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  ( A. x  e.  K  ( `' F " ( x  i^i  B ) )  e.  J  <->  A. x  e.  K  ( `' F " x )  e.  J ) )
55 simprr 522 . . . . . . . 8  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  F : U. J --> B )
5655, 31fssd 5350 . . . . . . 7  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  F : U. J --> Y )
5756biantrurd 303 . . . . . 6  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  ( A. x  e.  K  ( `' F " x )  e.  J  <->  ( F : U. J --> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
5838, 54, 573bitrrd 214 . . . . 5  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  ( ( F : U. J --> Y  /\  A. x  e.  K  ( `' F " x )  e.  J )  <->  A. y  e.  ( Kt  B ) ( `' F " y )  e.  J ) )
5955biantrurd 303 . . . . 5  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  ( A. y  e.  ( Kt  B
) ( `' F " y )  e.  J  <->  ( F : U. J --> B  /\  A. y  e.  ( Kt  B ) ( `' F " y )  e.  J ) ) )
6058, 59bitrd 187 . . . 4  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  ( ( F : U. J --> Y  /\  A. x  e.  K  ( `' F " x )  e.  J )  <->  ( F : U. J --> B  /\  A. y  e.  ( Kt  B ) ( `' F " y )  e.  J
) ) )
61 simprl 521 . . . . . 6  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  J  e.  Top )
6261, 15sylib 121 . . . . 5  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  J  e.  (TopOn `  U. J ) )
63 iscn 12837 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : U. J --> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
6462, 28, 63syl2anc 409 . . . 4  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : U. J --> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
6518adantr 274 . . . . 5  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  ( Kt  B
)  e.  (TopOn `  B ) )
66 iscn 12837 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  ( Kt  B )  e.  (TopOn `  B ) )  -> 
( F  e.  ( J  Cn  ( Kt  B ) )  <->  ( F : U. J --> B  /\  A. y  e.  ( Kt  B ) ( `' F " y )  e.  J
) ) )
6762, 65, 66syl2anc 409 . . . 4  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  ( F  e.  ( J  Cn  ( Kt  B ) )  <->  ( F : U. J --> B  /\  A. y  e.  ( Kt  B ) ( `' F " y )  e.  J
) ) )
6860, 64, 673bitr4d 219 . . 3  |-  ( ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  /\  ( J  e.  Top  /\  F : U. J --> B ) )  ->  ( F  e.  ( J  Cn  K
)  <->  F  e.  ( J  Cn  ( Kt  B ) ) ) )
6968ex 114 . 2  |-  ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  ->  (
( J  e.  Top  /\  F : U. J --> B )  ->  ( F  e.  ( J  Cn  K )  <->  F  e.  ( J  Cn  ( Kt  B ) ) ) ) )
7012, 24, 69pm5.21ndd 695 1  |-  ( ( K  e.  (TopOn `  Y )  /\  ran  F 
C_  B  /\  B  C_  Y )  ->  ( F  e.  ( J  Cn  K )  <->  F  e.  ( J  Cn  ( Kt  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   _Vcvv 2726    i^i cin 3115    C_ wss 3116   U.cuni 3789   `'ccnv 4603   dom cdm 4604   ran crn 4605   "cima 4607   Fun wfun 5182    Fn wfn 5183   -->wf 5184   ` cfv 5188  (class class class)co 5842   ↾t crest 12556   Topctop 12635  TopOnctopon 12648    Cn ccn 12825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-rest 12558  df-topgen 12577  df-top 12636  df-topon 12649  df-bases 12681  df-cn 12828
This theorem is referenced by:  cnrest2r  12877  hmeores  12955
  Copyright terms: Public domain W3C validator