ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imp2 Unicode version

Theorem 3imp2 1158
Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3imp1.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Assertion
Ref Expression
3imp2  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ta )

Proof of Theorem 3imp2
StepHypRef Expression
1 3imp1.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
213impd 1157 . 2  |-  ( ph  ->  ( ( ps  /\  ch  /\  th )  ->  ta ) )
32imp 122 1  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105
This theorem depends on definitions:  df-bi 115  df-3an 926
This theorem is referenced by:  ovg  5783
  Copyright terms: Public domain W3C validator