ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnnass Unicode version

Theorem mulgnnass 13608
Description: Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgass.b  |-  B  =  ( Base `  G
)
mulgass.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgnnass  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )

Proof of Theorem mulgnnass
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5974 . . . . . . . 8  |-  ( n  =  1  ->  (
n  x.  N )  =  ( 1  x.  N ) )
21oveq1d 5982 . . . . . . 7  |-  ( n  =  1  ->  (
( n  x.  N
)  .x.  X )  =  ( ( 1  x.  N )  .x.  X ) )
3 oveq1 5974 . . . . . . 7  |-  ( n  =  1  ->  (
n  .x.  ( N  .x.  X ) )  =  ( 1  .x.  ( N  .x.  X ) ) )
42, 3eqeq12d 2222 . . . . . 6  |-  ( n  =  1  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
1  x.  N ) 
.x.  X )  =  ( 1  .x.  ( N  .x.  X ) ) ) )
54imbi2d 230 . . . . 5  |-  ( n  =  1  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
1  x.  N ) 
.x.  X )  =  ( 1  .x.  ( N  .x.  X ) ) ) ) )
6 oveq1 5974 . . . . . . . 8  |-  ( n  =  m  ->  (
n  x.  N )  =  ( m  x.  N ) )
76oveq1d 5982 . . . . . . 7  |-  ( n  =  m  ->  (
( n  x.  N
)  .x.  X )  =  ( ( m  x.  N )  .x.  X ) )
8 oveq1 5974 . . . . . . 7  |-  ( n  =  m  ->  (
n  .x.  ( N  .x.  X ) )  =  ( m  .x.  ( N  .x.  X ) ) )
97, 8eqeq12d 2222 . . . . . 6  |-  ( n  =  m  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) ) )
109imbi2d 230 . . . . 5  |-  ( n  =  m  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) ) ) )
11 oveq1 5974 . . . . . . . 8  |-  ( n  =  ( m  + 
1 )  ->  (
n  x.  N )  =  ( ( m  +  1 )  x.  N ) )
1211oveq1d 5982 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
( n  x.  N
)  .x.  X )  =  ( ( ( m  +  1 )  x.  N )  .x.  X ) )
13 oveq1 5974 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
n  .x.  ( N  .x.  X ) )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) )
1412, 13eqeq12d 2222 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) )
1514imbi2d 230 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) ) )
16 oveq1 5974 . . . . . . . 8  |-  ( n  =  M  ->  (
n  x.  N )  =  ( M  x.  N ) )
1716oveq1d 5982 . . . . . . 7  |-  ( n  =  M  ->  (
( n  x.  N
)  .x.  X )  =  ( ( M  x.  N )  .x.  X ) )
18 oveq1 5974 . . . . . . 7  |-  ( n  =  M  ->  (
n  .x.  ( N  .x.  X ) )  =  ( M  .x.  ( N  .x.  X ) ) )
1917, 18eqeq12d 2222 . . . . . 6  |-  ( n  =  M  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) )
2019imbi2d 230 . . . . 5  |-  ( n  =  M  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) ) )
21 nncn 9079 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  CC )
2221mulid2d 8126 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  x.  N )  =  N )
23223ad2ant1 1021 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( 1  x.  N )  =  N )
2423oveq1d 5982 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( 1  x.  N
)  .x.  X )  =  ( N  .x.  X ) )
25 sgrpmgm 13354 . . . . . . . . 9  |-  ( G  e. Smgrp  ->  G  e. Mgm )
26 mulgass.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
27 mulgass.t . . . . . . . . . 10  |-  .x.  =  (.g
`  G )
2826, 27mulgnncl 13588 . . . . . . . . 9  |-  ( ( G  e. Mgm  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
2925, 28syl3an1 1283 . . . . . . . 8  |-  ( ( G  e. Smgrp  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
30293coml 1213 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( N  .x.  X )  e.  B )
3126, 27mulg1 13580 . . . . . . 7  |-  ( ( N  .x.  X )  e.  B  ->  (
1  .x.  ( N  .x.  X ) )  =  ( N  .x.  X
) )
3230, 31syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( 1  .x.  ( N 
.x.  X ) )  =  ( N  .x.  X ) )
3324, 32eqtr4d 2243 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( 1  x.  N
)  .x.  X )  =  ( 1  .x.  ( N  .x.  X
) ) )
34 oveq1 5974 . . . . . . . 8  |-  ( ( ( m  x.  N
)  .x.  X )  =  ( m  .x.  ( N  .x.  X ) )  ->  ( (
( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) )  =  ( ( m  .x.  ( N  .x.  X ) ) ( +g  `  G
) ( N  .x.  X ) ) )
35 nncn 9079 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  CC )
3635adantr 276 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  m  e.  CC )
37 simpr1 1006 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  N  e.  NN )
3837nncnd 9085 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  N  e.  CC )
3936, 38adddirp1d 8134 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( m  + 
1 )  x.  N
)  =  ( ( m  x.  N )  +  N ) )
4039oveq1d 5982 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( ( m  x.  N
)  +  N ) 
.x.  X ) )
41 simpr3 1008 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  G  e. Smgrp )
42 nnmulcl 9092 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  N  e.  NN )  ->  ( m  x.  N
)  e.  NN )
43423ad2antr1 1165 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( m  x.  N
)  e.  NN )
44 simpr2 1007 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  X  e.  B )
45 eqid 2207 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
4626, 27, 45mulgnndir 13602 . . . . . . . . . . 11  |-  ( ( G  e. Smgrp  /\  (
( m  x.  N
)  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( ( m  x.  N )  +  N )  .x.  X
)  =  ( ( ( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) ) )
4741, 43, 37, 44, 46syl13anc 1252 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  x.  N )  +  N )  .x.  X
)  =  ( ( ( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) ) )
4840, 47eqtrd 2240 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( ( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) ) )
4926, 27, 45mulgnnp1 13581 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  .x.  X )  e.  B )  -> 
( ( m  + 
1 )  .x.  ( N  .x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) )
5030, 49sylan2 286 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( m  + 
1 )  .x.  ( N  .x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) )
5148, 50eqeq12d 2222 . . . . . . . 8  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( ( m  +  1 )  x.  N )  .x.  X )  =  ( ( m  +  1 )  .x.  ( N 
.x.  X ) )  <-> 
( ( ( m  x.  N )  .x.  X ) ( +g  `  G ) ( N 
.x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) ) )
5234, 51imbitrrid 156 . . . . . . 7  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  x.  N )  .x.  X )  =  ( m  .x.  ( N 
.x.  X ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X )  =  ( ( m  +  1 )  .x.  ( N 
.x.  X ) ) ) )
5352ex 115 . . . . . 6  |-  ( m  e.  NN  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( ( m  x.  N )  .x.  X
)  =  ( m 
.x.  ( N  .x.  X ) )  -> 
( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( m  +  1 ) 
.x.  ( N  .x.  X ) ) ) ) )
5453a2d 26 . . . . 5  |-  ( m  e.  NN  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) )  ->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) ) )
555, 10, 15, 20, 33, 54nnind 9087 . . . 4  |-  ( M  e.  NN  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
56553expd 1227 . . 3  |-  ( M  e.  NN  ->  ( N  e.  NN  ->  ( X  e.  B  -> 
( G  e. Smgrp  ->  ( ( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) ) ) )
5756com4r 86 . 2  |-  ( G  e. Smgrp  ->  ( M  e.  NN  ->  ( N  e.  NN  ->  ( X  e.  B  ->  ( ( M  x.  N ) 
.x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) ) ) )
58573imp2 1225 1  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963    x. cmul 7965   NNcn 9071   Basecbs 12947   +g cplusg 13024  Mgmcmgm 13301  Smgrpcsgrp 13348  .gcmg 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-minusg 13451  df-mulg 13571
This theorem is referenced by:  mulgnn0ass  13609
  Copyright terms: Public domain W3C validator