ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnnass Unicode version

Theorem mulgnnass 12868
Description: Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgass.b  |-  B  =  ( Base `  G
)
mulgass.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgnnass  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )

Proof of Theorem mulgnnass
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5864 . . . . . . . 8  |-  ( n  =  1  ->  (
n  x.  N )  =  ( 1  x.  N ) )
21oveq1d 5872 . . . . . . 7  |-  ( n  =  1  ->  (
( n  x.  N
)  .x.  X )  =  ( ( 1  x.  N )  .x.  X ) )
3 oveq1 5864 . . . . . . 7  |-  ( n  =  1  ->  (
n  .x.  ( N  .x.  X ) )  =  ( 1  .x.  ( N  .x.  X ) ) )
42, 3eqeq12d 2186 . . . . . 6  |-  ( n  =  1  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
1  x.  N ) 
.x.  X )  =  ( 1  .x.  ( N  .x.  X ) ) ) )
54imbi2d 229 . . . . 5  |-  ( n  =  1  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
1  x.  N ) 
.x.  X )  =  ( 1  .x.  ( N  .x.  X ) ) ) ) )
6 oveq1 5864 . . . . . . . 8  |-  ( n  =  m  ->  (
n  x.  N )  =  ( m  x.  N ) )
76oveq1d 5872 . . . . . . 7  |-  ( n  =  m  ->  (
( n  x.  N
)  .x.  X )  =  ( ( m  x.  N )  .x.  X ) )
8 oveq1 5864 . . . . . . 7  |-  ( n  =  m  ->  (
n  .x.  ( N  .x.  X ) )  =  ( m  .x.  ( N  .x.  X ) ) )
97, 8eqeq12d 2186 . . . . . 6  |-  ( n  =  m  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) ) )
109imbi2d 229 . . . . 5  |-  ( n  =  m  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) ) ) )
11 oveq1 5864 . . . . . . . 8  |-  ( n  =  ( m  + 
1 )  ->  (
n  x.  N )  =  ( ( m  +  1 )  x.  N ) )
1211oveq1d 5872 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
( n  x.  N
)  .x.  X )  =  ( ( ( m  +  1 )  x.  N )  .x.  X ) )
13 oveq1 5864 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
n  .x.  ( N  .x.  X ) )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) )
1412, 13eqeq12d 2186 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) )
1514imbi2d 229 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) ) )
16 oveq1 5864 . . . . . . . 8  |-  ( n  =  M  ->  (
n  x.  N )  =  ( M  x.  N ) )
1716oveq1d 5872 . . . . . . 7  |-  ( n  =  M  ->  (
( n  x.  N
)  .x.  X )  =  ( ( M  x.  N )  .x.  X ) )
18 oveq1 5864 . . . . . . 7  |-  ( n  =  M  ->  (
n  .x.  ( N  .x.  X ) )  =  ( M  .x.  ( N  .x.  X ) ) )
1917, 18eqeq12d 2186 . . . . . 6  |-  ( n  =  M  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) )
2019imbi2d 229 . . . . 5  |-  ( n  =  M  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) ) )
21 nncn 8890 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  CC )
2221mulid2d 7942 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  x.  N )  =  N )
23223ad2ant1 1014 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( 1  x.  N )  =  N )
2423oveq1d 5872 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( 1  x.  N
)  .x.  X )  =  ( N  .x.  X ) )
25 sgrpmgm 12670 . . . . . . . . 9  |-  ( G  e. Smgrp  ->  G  e. Mgm )
26 mulgass.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
27 mulgass.t . . . . . . . . . 10  |-  .x.  =  (.g
`  G )
2826, 27mulgnncl 12849 . . . . . . . . 9  |-  ( ( G  e. Mgm  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
2925, 28syl3an1 1267 . . . . . . . 8  |-  ( ( G  e. Smgrp  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
30293coml 1206 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( N  .x.  X )  e.  B )
3126, 27mulg1 12841 . . . . . . 7  |-  ( ( N  .x.  X )  e.  B  ->  (
1  .x.  ( N  .x.  X ) )  =  ( N  .x.  X
) )
3230, 31syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( 1  .x.  ( N 
.x.  X ) )  =  ( N  .x.  X ) )
3324, 32eqtr4d 2207 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( 1  x.  N
)  .x.  X )  =  ( 1  .x.  ( N  .x.  X
) ) )
34 oveq1 5864 . . . . . . . 8  |-  ( ( ( m  x.  N
)  .x.  X )  =  ( m  .x.  ( N  .x.  X ) )  ->  ( (
( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) )  =  ( ( m  .x.  ( N  .x.  X ) ) ( +g  `  G
) ( N  .x.  X ) ) )
35 nncn 8890 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  CC )
3635adantr 274 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  m  e.  CC )
37 simpr1 999 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  N  e.  NN )
3837nncnd 8896 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  N  e.  CC )
3936, 38adddirp1d 7950 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( m  + 
1 )  x.  N
)  =  ( ( m  x.  N )  +  N ) )
4039oveq1d 5872 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( ( m  x.  N
)  +  N ) 
.x.  X ) )
41 simpr3 1001 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  G  e. Smgrp )
42 nnmulcl 8903 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  N  e.  NN )  ->  ( m  x.  N
)  e.  NN )
43423ad2antr1 1158 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( m  x.  N
)  e.  NN )
44 simpr2 1000 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  X  e.  B )
45 eqid 2171 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
4626, 27, 45mulgnndir 12862 . . . . . . . . . . 11  |-  ( ( G  e. Smgrp  /\  (
( m  x.  N
)  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( ( m  x.  N )  +  N )  .x.  X
)  =  ( ( ( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) ) )
4741, 43, 37, 44, 46syl13anc 1236 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  x.  N )  +  N )  .x.  X
)  =  ( ( ( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) ) )
4840, 47eqtrd 2204 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( ( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) ) )
4926, 27, 45mulgnnp1 12842 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  .x.  X )  e.  B )  -> 
( ( m  + 
1 )  .x.  ( N  .x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) )
5030, 49sylan2 284 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( m  + 
1 )  .x.  ( N  .x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) )
5148, 50eqeq12d 2186 . . . . . . . 8  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( ( m  +  1 )  x.  N )  .x.  X )  =  ( ( m  +  1 )  .x.  ( N 
.x.  X ) )  <-> 
( ( ( m  x.  N )  .x.  X ) ( +g  `  G ) ( N 
.x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) ) )
5234, 51syl5ibr 155 . . . . . . 7  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  x.  N )  .x.  X )  =  ( m  .x.  ( N 
.x.  X ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X )  =  ( ( m  +  1 )  .x.  ( N 
.x.  X ) ) ) )
5352ex 114 . . . . . 6  |-  ( m  e.  NN  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( ( m  x.  N )  .x.  X
)  =  ( m 
.x.  ( N  .x.  X ) )  -> 
( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( m  +  1 ) 
.x.  ( N  .x.  X ) ) ) ) )
5453a2d 26 . . . . 5  |-  ( m  e.  NN  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) )  ->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) ) )
555, 10, 15, 20, 33, 54nnind 8898 . . . 4  |-  ( M  e.  NN  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
56553expd 1220 . . 3  |-  ( M  e.  NN  ->  ( N  e.  NN  ->  ( X  e.  B  -> 
( G  e. Smgrp  ->  ( ( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) ) ) )
5756com4r 86 . 2  |-  ( G  e. Smgrp  ->  ( M  e.  NN  ->  ( N  e.  NN  ->  ( X  e.  B  ->  ( ( M  x.  N ) 
.x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) ) ) )
58573imp2 1218 1  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 974    = wceq 1349    e. wcel 2142   ` cfv 5200  (class class class)co 5857   CCcc 7776   1c1 7779    + caddc 7781    x. cmul 7783   NNcn 8882   Basecbs 12420   +g cplusg 12484  Mgmcmgm 12630  Smgrpcsgrp 12664  .gcmg 12834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-coll 4105  ax-sep 4108  ax-nul 4116  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-setind 4522  ax-iinf 4573  ax-cnex 7869  ax-resscn 7870  ax-1cn 7871  ax-1re 7872  ax-icn 7873  ax-addcl 7874  ax-addrcl 7875  ax-mulcl 7876  ax-addcom 7878  ax-mulcom 7879  ax-addass 7880  ax-mulass 7881  ax-distr 7882  ax-i2m1 7883  ax-0lt1 7884  ax-1rid 7885  ax-0id 7886  ax-rnegex 7887  ax-cnre 7889  ax-pre-ltirr 7890  ax-pre-ltwlin 7891  ax-pre-lttrn 7892  ax-pre-ltadd 7894
This theorem depends on definitions:  df-bi 116  df-dc 831  df-3or 975  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-nel 2437  df-ral 2454  df-rex 2455  df-reu 2456  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-nul 3416  df-if 3528  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-tr 4089  df-id 4279  df-iord 4352  df-on 4354  df-ilim 4355  df-suc 4357  df-iom 4576  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-riota 5813  df-ov 5860  df-oprab 5861  df-mpo 5862  df-1st 6123  df-2nd 6124  df-recs 6288  df-frec 6374  df-pnf 7960  df-mnf 7961  df-xr 7962  df-ltxr 7963  df-le 7964  df-sub 8096  df-neg 8097  df-inn 8883  df-2 8941  df-n0 9140  df-z 9217  df-uz 9492  df-fz 9970  df-seqfrec 10406  df-ndx 12423  df-slot 12424  df-base 12426  df-plusg 12497  df-0g 12620  df-mgm 12632  df-sgrp 12665  df-minusg 12734  df-mulg 12835
This theorem is referenced by:  mulgnn0ass  12869
  Copyright terms: Public domain W3C validator