ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnnass Unicode version

Theorem mulgnnass 13694
Description: Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgass.b  |-  B  =  ( Base `  G
)
mulgass.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgnnass  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )

Proof of Theorem mulgnnass
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6008 . . . . . . . 8  |-  ( n  =  1  ->  (
n  x.  N )  =  ( 1  x.  N ) )
21oveq1d 6016 . . . . . . 7  |-  ( n  =  1  ->  (
( n  x.  N
)  .x.  X )  =  ( ( 1  x.  N )  .x.  X ) )
3 oveq1 6008 . . . . . . 7  |-  ( n  =  1  ->  (
n  .x.  ( N  .x.  X ) )  =  ( 1  .x.  ( N  .x.  X ) ) )
42, 3eqeq12d 2244 . . . . . 6  |-  ( n  =  1  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
1  x.  N ) 
.x.  X )  =  ( 1  .x.  ( N  .x.  X ) ) ) )
54imbi2d 230 . . . . 5  |-  ( n  =  1  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
1  x.  N ) 
.x.  X )  =  ( 1  .x.  ( N  .x.  X ) ) ) ) )
6 oveq1 6008 . . . . . . . 8  |-  ( n  =  m  ->  (
n  x.  N )  =  ( m  x.  N ) )
76oveq1d 6016 . . . . . . 7  |-  ( n  =  m  ->  (
( n  x.  N
)  .x.  X )  =  ( ( m  x.  N )  .x.  X ) )
8 oveq1 6008 . . . . . . 7  |-  ( n  =  m  ->  (
n  .x.  ( N  .x.  X ) )  =  ( m  .x.  ( N  .x.  X ) ) )
97, 8eqeq12d 2244 . . . . . 6  |-  ( n  =  m  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) ) )
109imbi2d 230 . . . . 5  |-  ( n  =  m  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) ) ) )
11 oveq1 6008 . . . . . . . 8  |-  ( n  =  ( m  + 
1 )  ->  (
n  x.  N )  =  ( ( m  +  1 )  x.  N ) )
1211oveq1d 6016 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
( n  x.  N
)  .x.  X )  =  ( ( ( m  +  1 )  x.  N )  .x.  X ) )
13 oveq1 6008 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
n  .x.  ( N  .x.  X ) )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) )
1412, 13eqeq12d 2244 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) )
1514imbi2d 230 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) ) )
16 oveq1 6008 . . . . . . . 8  |-  ( n  =  M  ->  (
n  x.  N )  =  ( M  x.  N ) )
1716oveq1d 6016 . . . . . . 7  |-  ( n  =  M  ->  (
( n  x.  N
)  .x.  X )  =  ( ( M  x.  N )  .x.  X ) )
18 oveq1 6008 . . . . . . 7  |-  ( n  =  M  ->  (
n  .x.  ( N  .x.  X ) )  =  ( M  .x.  ( N  .x.  X ) ) )
1917, 18eqeq12d 2244 . . . . . 6  |-  ( n  =  M  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) )
2019imbi2d 230 . . . . 5  |-  ( n  =  M  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) ) )
21 nncn 9118 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  CC )
2221mulid2d 8165 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  x.  N )  =  N )
23223ad2ant1 1042 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( 1  x.  N )  =  N )
2423oveq1d 6016 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( 1  x.  N
)  .x.  X )  =  ( N  .x.  X ) )
25 sgrpmgm 13440 . . . . . . . . 9  |-  ( G  e. Smgrp  ->  G  e. Mgm )
26 mulgass.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
27 mulgass.t . . . . . . . . . 10  |-  .x.  =  (.g
`  G )
2826, 27mulgnncl 13674 . . . . . . . . 9  |-  ( ( G  e. Mgm  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
2925, 28syl3an1 1304 . . . . . . . 8  |-  ( ( G  e. Smgrp  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
30293coml 1234 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( N  .x.  X )  e.  B )
3126, 27mulg1 13666 . . . . . . 7  |-  ( ( N  .x.  X )  e.  B  ->  (
1  .x.  ( N  .x.  X ) )  =  ( N  .x.  X
) )
3230, 31syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( 1  .x.  ( N 
.x.  X ) )  =  ( N  .x.  X ) )
3324, 32eqtr4d 2265 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( 1  x.  N
)  .x.  X )  =  ( 1  .x.  ( N  .x.  X
) ) )
34 oveq1 6008 . . . . . . . 8  |-  ( ( ( m  x.  N
)  .x.  X )  =  ( m  .x.  ( N  .x.  X ) )  ->  ( (
( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) )  =  ( ( m  .x.  ( N  .x.  X ) ) ( +g  `  G
) ( N  .x.  X ) ) )
35 nncn 9118 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  CC )
3635adantr 276 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  m  e.  CC )
37 simpr1 1027 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  N  e.  NN )
3837nncnd 9124 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  N  e.  CC )
3936, 38adddirp1d 8173 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( m  + 
1 )  x.  N
)  =  ( ( m  x.  N )  +  N ) )
4039oveq1d 6016 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( ( m  x.  N
)  +  N ) 
.x.  X ) )
41 simpr3 1029 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  G  e. Smgrp )
42 nnmulcl 9131 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  N  e.  NN )  ->  ( m  x.  N
)  e.  NN )
43423ad2antr1 1186 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( m  x.  N
)  e.  NN )
44 simpr2 1028 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  X  e.  B )
45 eqid 2229 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
4626, 27, 45mulgnndir 13688 . . . . . . . . . . 11  |-  ( ( G  e. Smgrp  /\  (
( m  x.  N
)  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( ( m  x.  N )  +  N )  .x.  X
)  =  ( ( ( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) ) )
4741, 43, 37, 44, 46syl13anc 1273 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  x.  N )  +  N )  .x.  X
)  =  ( ( ( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) ) )
4840, 47eqtrd 2262 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( ( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) ) )
4926, 27, 45mulgnnp1 13667 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  .x.  X )  e.  B )  -> 
( ( m  + 
1 )  .x.  ( N  .x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) )
5030, 49sylan2 286 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( m  + 
1 )  .x.  ( N  .x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) )
5148, 50eqeq12d 2244 . . . . . . . 8  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( ( m  +  1 )  x.  N )  .x.  X )  =  ( ( m  +  1 )  .x.  ( N 
.x.  X ) )  <-> 
( ( ( m  x.  N )  .x.  X ) ( +g  `  G ) ( N 
.x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) ) )
5234, 51imbitrrid 156 . . . . . . 7  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  x.  N )  .x.  X )  =  ( m  .x.  ( N 
.x.  X ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X )  =  ( ( m  +  1 )  .x.  ( N 
.x.  X ) ) ) )
5352ex 115 . . . . . 6  |-  ( m  e.  NN  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( ( m  x.  N )  .x.  X
)  =  ( m 
.x.  ( N  .x.  X ) )  -> 
( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( m  +  1 ) 
.x.  ( N  .x.  X ) ) ) ) )
5453a2d 26 . . . . 5  |-  ( m  e.  NN  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) )  ->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) ) )
555, 10, 15, 20, 33, 54nnind 9126 . . . 4  |-  ( M  e.  NN  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
56553expd 1248 . . 3  |-  ( M  e.  NN  ->  ( N  e.  NN  ->  ( X  e.  B  -> 
( G  e. Smgrp  ->  ( ( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) ) ) )
5756com4r 86 . 2  |-  ( G  e. Smgrp  ->  ( M  e.  NN  ->  ( N  e.  NN  ->  ( X  e.  B  ->  ( ( M  x.  N ) 
.x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) ) ) )
58573imp2 1246 1  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   CCcc 7997   1c1 8000    + caddc 8002    x. cmul 8004   NNcn 9110   Basecbs 13032   +g cplusg 13110  Mgmcmgm 13387  Smgrpcsgrp 13434  .gcmg 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-seqfrec 10670  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-minusg 13537  df-mulg 13657
This theorem is referenced by:  mulgnn0ass  13695
  Copyright terms: Public domain W3C validator