ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnnass Unicode version

Theorem mulgnnass 13526
Description: Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgass.b  |-  B  =  ( Base `  G
)
mulgass.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgnnass  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )

Proof of Theorem mulgnnass
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5953 . . . . . . . 8  |-  ( n  =  1  ->  (
n  x.  N )  =  ( 1  x.  N ) )
21oveq1d 5961 . . . . . . 7  |-  ( n  =  1  ->  (
( n  x.  N
)  .x.  X )  =  ( ( 1  x.  N )  .x.  X ) )
3 oveq1 5953 . . . . . . 7  |-  ( n  =  1  ->  (
n  .x.  ( N  .x.  X ) )  =  ( 1  .x.  ( N  .x.  X ) ) )
42, 3eqeq12d 2220 . . . . . 6  |-  ( n  =  1  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
1  x.  N ) 
.x.  X )  =  ( 1  .x.  ( N  .x.  X ) ) ) )
54imbi2d 230 . . . . 5  |-  ( n  =  1  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
1  x.  N ) 
.x.  X )  =  ( 1  .x.  ( N  .x.  X ) ) ) ) )
6 oveq1 5953 . . . . . . . 8  |-  ( n  =  m  ->  (
n  x.  N )  =  ( m  x.  N ) )
76oveq1d 5961 . . . . . . 7  |-  ( n  =  m  ->  (
( n  x.  N
)  .x.  X )  =  ( ( m  x.  N )  .x.  X ) )
8 oveq1 5953 . . . . . . 7  |-  ( n  =  m  ->  (
n  .x.  ( N  .x.  X ) )  =  ( m  .x.  ( N  .x.  X ) ) )
97, 8eqeq12d 2220 . . . . . 6  |-  ( n  =  m  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) ) )
109imbi2d 230 . . . . 5  |-  ( n  =  m  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) ) ) )
11 oveq1 5953 . . . . . . . 8  |-  ( n  =  ( m  + 
1 )  ->  (
n  x.  N )  =  ( ( m  +  1 )  x.  N ) )
1211oveq1d 5961 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
( n  x.  N
)  .x.  X )  =  ( ( ( m  +  1 )  x.  N )  .x.  X ) )
13 oveq1 5953 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
n  .x.  ( N  .x.  X ) )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) )
1412, 13eqeq12d 2220 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) )
1514imbi2d 230 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) ) )
16 oveq1 5953 . . . . . . . 8  |-  ( n  =  M  ->  (
n  x.  N )  =  ( M  x.  N ) )
1716oveq1d 5961 . . . . . . 7  |-  ( n  =  M  ->  (
( n  x.  N
)  .x.  X )  =  ( ( M  x.  N )  .x.  X ) )
18 oveq1 5953 . . . . . . 7  |-  ( n  =  M  ->  (
n  .x.  ( N  .x.  X ) )  =  ( M  .x.  ( N  .x.  X ) ) )
1917, 18eqeq12d 2220 . . . . . 6  |-  ( n  =  M  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) )
2019imbi2d 230 . . . . 5  |-  ( n  =  M  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
n  x.  N ) 
.x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) ) )
21 nncn 9046 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  CC )
2221mulid2d 8093 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  x.  N )  =  N )
23223ad2ant1 1021 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( 1  x.  N )  =  N )
2423oveq1d 5961 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( 1  x.  N
)  .x.  X )  =  ( N  .x.  X ) )
25 sgrpmgm 13272 . . . . . . . . 9  |-  ( G  e. Smgrp  ->  G  e. Mgm )
26 mulgass.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
27 mulgass.t . . . . . . . . . 10  |-  .x.  =  (.g
`  G )
2826, 27mulgnncl 13506 . . . . . . . . 9  |-  ( ( G  e. Mgm  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
2925, 28syl3an1 1283 . . . . . . . 8  |-  ( ( G  e. Smgrp  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
30293coml 1213 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( N  .x.  X )  e.  B )
3126, 27mulg1 13498 . . . . . . 7  |-  ( ( N  .x.  X )  e.  B  ->  (
1  .x.  ( N  .x.  X ) )  =  ( N  .x.  X
) )
3230, 31syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( 1  .x.  ( N 
.x.  X ) )  =  ( N  .x.  X ) )
3324, 32eqtr4d 2241 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( 1  x.  N
)  .x.  X )  =  ( 1  .x.  ( N  .x.  X
) ) )
34 oveq1 5953 . . . . . . . 8  |-  ( ( ( m  x.  N
)  .x.  X )  =  ( m  .x.  ( N  .x.  X ) )  ->  ( (
( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) )  =  ( ( m  .x.  ( N  .x.  X ) ) ( +g  `  G
) ( N  .x.  X ) ) )
35 nncn 9046 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  CC )
3635adantr 276 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  m  e.  CC )
37 simpr1 1006 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  N  e.  NN )
3837nncnd 9052 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  N  e.  CC )
3936, 38adddirp1d 8101 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( m  + 
1 )  x.  N
)  =  ( ( m  x.  N )  +  N ) )
4039oveq1d 5961 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( ( m  x.  N
)  +  N ) 
.x.  X ) )
41 simpr3 1008 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  G  e. Smgrp )
42 nnmulcl 9059 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  N  e.  NN )  ->  ( m  x.  N
)  e.  NN )
43423ad2antr1 1165 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( m  x.  N
)  e.  NN )
44 simpr2 1007 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  X  e.  B )
45 eqid 2205 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
4626, 27, 45mulgnndir 13520 . . . . . . . . . . 11  |-  ( ( G  e. Smgrp  /\  (
( m  x.  N
)  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( ( m  x.  N )  +  N )  .x.  X
)  =  ( ( ( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) ) )
4741, 43, 37, 44, 46syl13anc 1252 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  x.  N )  +  N )  .x.  X
)  =  ( ( ( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) ) )
4840, 47eqtrd 2238 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( ( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) ) )
4926, 27, 45mulgnnp1 13499 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  .x.  X )  e.  B )  -> 
( ( m  + 
1 )  .x.  ( N  .x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) )
5030, 49sylan2 286 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( m  + 
1 )  .x.  ( N  .x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) )
5148, 50eqeq12d 2220 . . . . . . . 8  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( ( m  +  1 )  x.  N )  .x.  X )  =  ( ( m  +  1 )  .x.  ( N 
.x.  X ) )  <-> 
( ( ( m  x.  N )  .x.  X ) ( +g  `  G ) ( N 
.x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) ) )
5234, 51imbitrrid 156 . . . . . . 7  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp ) )  ->  ( ( ( m  x.  N )  .x.  X )  =  ( m  .x.  ( N 
.x.  X ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X )  =  ( ( m  +  1 )  .x.  ( N 
.x.  X ) ) ) )
5352ex 115 . . . . . 6  |-  ( m  e.  NN  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( ( m  x.  N )  .x.  X
)  =  ( m 
.x.  ( N  .x.  X ) )  -> 
( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( m  +  1 ) 
.x.  ( N  .x.  X ) ) ) ) )
5453a2d 26 . . . . 5  |-  ( m  e.  NN  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) )  ->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp
)  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) ) )
555, 10, 15, 20, 33, 54nnind 9054 . . . 4  |-  ( M  e.  NN  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e. Smgrp )  ->  ( ( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
56553expd 1227 . . 3  |-  ( M  e.  NN  ->  ( N  e.  NN  ->  ( X  e.  B  -> 
( G  e. Smgrp  ->  ( ( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) ) ) )
5756com4r 86 . 2  |-  ( G  e. Smgrp  ->  ( M  e.  NN  ->  ( N  e.  NN  ->  ( X  e.  B  ->  ( ( M  x.  N ) 
.x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) ) ) )
58573imp2 1225 1  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5272  (class class class)co 5946   CCcc 7925   1c1 7928    + caddc 7930    x. cmul 7932   NNcn 9038   Basecbs 12865   +g cplusg 12942  Mgmcmgm 13219  Smgrpcsgrp 13266  .gcmg 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-2 9097  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133  df-seqfrec 10595  df-ndx 12868  df-slot 12869  df-base 12871  df-plusg 12955  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-minusg 13369  df-mulg 13489
This theorem is referenced by:  mulgnn0ass  13527
  Copyright terms: Public domain W3C validator