ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgass2 Unicode version

Theorem mulgass2 13027
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass2.b  |-  B  =  ( Base `  R
)
mulgass2.m  |-  .x.  =  (.g
`  R )
mulgass2.t  |-  .X.  =  ( .r `  R )
Assertion
Ref Expression
mulgass2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) )

Proof of Theorem mulgass2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5872 . . . . . . 7  |-  ( x  =  0  ->  (
x  .x.  X )  =  ( 0  .x. 
X ) )
21oveq1d 5880 . . . . . 6  |-  ( x  =  0  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( 0 
.x.  X )  .X.  Y ) )
3 oveq1 5872 . . . . . 6  |-  ( x  =  0  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( 0  .x.  ( X  .X.  Y ) ) )
42, 3eqeq12d 2190 . . . . 5  |-  ( x  =  0  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
0  .x.  X )  .X.  Y )  =  ( 0  .x.  ( X 
.X.  Y ) ) ) )
5 oveq1 5872 . . . . . . 7  |-  ( x  =  y  ->  (
x  .x.  X )  =  ( y  .x.  X ) )
65oveq1d 5880 . . . . . 6  |-  ( x  =  y  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( y 
.x.  X )  .X.  Y ) )
7 oveq1 5872 . . . . . 6  |-  ( x  =  y  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( y  .x.  ( X  .X.  Y ) ) )
86, 7eqeq12d 2190 . . . . 5  |-  ( x  =  y  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
y  .x.  X )  .X.  Y )  =  ( y  .x.  ( X 
.X.  Y ) ) ) )
9 oveq1 5872 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  X )  =  ( ( y  +  1 )  .x.  X ) )
109oveq1d 5880 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y ) )
11 oveq1 5872 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
1210, 11eqeq12d 2190 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
( y  +  1 )  .x.  X ) 
.X.  Y )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) ) )
13 oveq1 5872 . . . . . . 7  |-  ( x  =  -u y  ->  (
x  .x.  X )  =  ( -u y  .x.  X ) )
1413oveq1d 5880 . . . . . 6  |-  ( x  =  -u y  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( -u y  .x.  X )  .X.  Y ) )
15 oveq1 5872 . . . . . 6  |-  ( x  =  -u y  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( -u y  .x.  ( X  .X.  Y ) ) )
1614, 15eqeq12d 2190 . . . . 5  |-  ( x  =  -u y  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( ( -u y  .x.  X ) 
.X.  Y )  =  ( -u y  .x.  ( X  .X.  Y ) ) ) )
17 oveq1 5872 . . . . . . 7  |-  ( x  =  N  ->  (
x  .x.  X )  =  ( N  .x.  X ) )
1817oveq1d 5880 . . . . . 6  |-  ( x  =  N  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( N 
.x.  X )  .X.  Y ) )
19 oveq1 5872 . . . . . 6  |-  ( x  =  N  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )
2018, 19eqeq12d 2190 . . . . 5  |-  ( x  =  N  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( ( N  .x.  X )  .X.  Y )  =  ( N  .x.  ( X 
.X.  Y ) ) ) )
21 mulgass2.b . . . . . . . 8  |-  B  =  ( Base `  R
)
22 mulgass2.t . . . . . . . 8  |-  .X.  =  ( .r `  R )
23 eqid 2175 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
2421, 22, 23ringlz 13014 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (
( 0g `  R
)  .X.  Y )  =  ( 0g `  R ) )
25243adant3 1017 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
( 0g `  R
)  .X.  Y )  =  ( 0g `  R ) )
26 simp3 999 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  X  e.  B )
27 mulgass2.m . . . . . . . . 9  |-  .x.  =  (.g
`  R )
2821, 23, 27mulg0 12847 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  R ) )
2926, 28syl 14 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
0  .x.  X )  =  ( 0g `  R ) )
3029oveq1d 5880 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
( 0  .x.  X
)  .X.  Y )  =  ( ( 0g
`  R )  .X.  Y ) )
3121, 22ringcl 12989 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .X.  Y )  e.  B )
32313com23 1209 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  ( X  .X.  Y )  e.  B )
3321, 23, 27mulg0 12847 . . . . . . 7  |-  ( ( X  .X.  Y )  e.  B  ->  ( 0 
.x.  ( X  .X.  Y ) )  =  ( 0g `  R
) )
3432, 33syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
0  .x.  ( X  .X.  Y ) )  =  ( 0g `  R
) )
3525, 30, 343eqtr4d 2218 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
( 0  .x.  X
)  .X.  Y )  =  ( 0  .x.  ( X  .X.  Y
) ) )
36 oveq1 5872 . . . . . . 7  |-  ( ( ( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( (
( y  .x.  X
)  .X.  Y )
( +g  `  R ) ( X  .X.  Y
) )  =  ( ( y  .x.  ( X  .X.  Y ) ) ( +g  `  R
) ( X  .X.  Y ) ) )
37 simpl1 1000 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  R  e.  Ring )
38 ringgrp 12977 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  R  e. 
Grp )
3937, 38syl 14 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  R  e.  Grp )
40 nn0z 9244 . . . . . . . . . . . 12  |-  ( y  e.  NN0  ->  y  e.  ZZ )
4140adantl 277 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  y  e.  ZZ )
4226adantr 276 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  X  e.  B
)
43 eqid 2175 . . . . . . . . . . . 12  |-  ( +g  `  R )  =  ( +g  `  R )
4421, 27, 43mulgp1 12874 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  R ) X ) )
4539, 41, 42, 44syl3anc 1238 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( y  +  1 )  .x.  X )  =  ( ( y  .x.  X
) ( +g  `  R
) X ) )
4645oveq1d 5880 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( ( y  .x.  X ) ( +g  `  R ) X ) 
.X.  Y ) )
47383ad2ant1 1018 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  R  e.  Grp )
4847adantr 276 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  R  e.  Grp )
4921, 27mulgcl 12859 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
5048, 41, 42, 49syl3anc 1238 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( y  .x.  X )  e.  B
)
51 simpl2 1001 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  Y  e.  B
)
5221, 43, 22ringdir 12995 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
( y  .x.  X
)  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
( y  .x.  X
) ( +g  `  R
) X )  .X.  Y )  =  ( ( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) ) )
5337, 50, 42, 51, 52syl13anc 1240 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( y  .x.  X ) ( +g  `  R
) X )  .X.  Y )  =  ( ( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) ) )
5446, 53eqtrd 2208 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) ) )
5532adantr 276 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( X  .X.  Y )  e.  B
)
5621, 27, 43mulgp1 12874 . . . . . . . . 9  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  ( X  .X.  Y )  e.  B )  ->  (
( y  +  1 )  .x.  ( X 
.X.  Y ) )  =  ( ( y 
.x.  ( X  .X.  Y ) ) ( +g  `  R ) ( X  .X.  Y
) ) )
5739, 41, 55, 56syl3anc 1238 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( y  +  1 )  .x.  ( X  .X.  Y ) )  =  ( ( y  .x.  ( X 
.X.  Y ) ) ( +g  `  R
) ( X  .X.  Y ) ) )
5854, 57eqeq12d 2190 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( ( y  +  1 )  .x.  X ) 
.X.  Y )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) )  <-> 
( ( ( y 
.x.  X )  .X.  Y ) ( +g  `  R ) ( X 
.X.  Y ) )  =  ( ( y 
.x.  ( X  .X.  Y ) ) ( +g  `  R ) ( X  .X.  Y
) ) ) )
5936, 58syl5ibr 156 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( y  .x.  X ) 
.X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( y  +  1 )  .x.  ( X 
.X.  Y ) ) ) )
6059ex 115 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
y  e.  NN0  ->  ( ( ( y  .x.  X )  .X.  Y
)  =  ( y 
.x.  ( X  .X.  Y ) )  -> 
( ( ( y  +  1 )  .x.  X )  .X.  Y
)  =  ( ( y  +  1 ) 
.x.  ( X  .X.  Y ) ) ) ) )
61 fveq2 5507 . . . . . . 7  |-  ( ( ( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( ( invg `  R ) `
 ( ( y 
.x.  X )  .X.  Y ) )  =  ( ( invg `  R ) `  (
y  .x.  ( X  .X.  Y ) ) ) )
6247adantr 276 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  R  e.  Grp )
63 nnz 9243 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  y  e.  ZZ )
6463adantl 277 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  y  e.  ZZ )
6526adantr 276 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  X  e.  B
)
66 eqid 2175 . . . . . . . . . . . 12  |-  ( invg `  R )  =  ( invg `  R )
6721, 27, 66mulgneg 12860 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  X )  =  ( ( invg `  R ) `
 ( y  .x.  X ) ) )
6862, 64, 65, 67syl3anc 1238 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( -u y  .x.  X )  =  ( ( invg `  R ) `  (
y  .x.  X )
) )
6968oveq1d 5880 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( -u y  .x.  X )  .X.  Y )  =  ( ( ( invg `  R ) `  (
y  .x.  X )
)  .X.  Y )
)
70 simpl1 1000 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  R  e.  Ring )
7162, 64, 65, 49syl3anc 1238 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( y  .x.  X )  e.  B
)
72 simpl2 1001 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  Y  e.  B
)
7321, 22, 66, 70, 71, 72ringmneg1 13022 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( ( invg `  R
) `  ( y  .x.  X ) )  .X.  Y )  =  ( ( invg `  R ) `  (
( y  .x.  X
)  .X.  Y )
) )
7469, 73eqtrd 2208 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( -u y  .x.  X )  .X.  Y )  =  ( ( invg `  R ) `  (
( y  .x.  X
)  .X.  Y )
) )
7532adantr 276 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( X  .X.  Y )  e.  B
)
7621, 27, 66mulgneg 12860 . . . . . . . . 9  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  ( X  .X.  Y )  e.  B )  ->  ( -u y  .x.  ( X 
.X.  Y ) )  =  ( ( invg `  R ) `
 ( y  .x.  ( X  .X.  Y ) ) ) )
7762, 64, 75, 76syl3anc 1238 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( -u y  .x.  ( X  .X.  Y
) )  =  ( ( invg `  R ) `  (
y  .x.  ( X  .X.  Y ) ) ) )
7874, 77eqeq12d 2190 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( (
-u y  .x.  X
)  .X.  Y )  =  ( -u y  .x.  ( X  .X.  Y
) )  <->  ( ( invg `  R ) `
 ( ( y 
.x.  X )  .X.  Y ) )  =  ( ( invg `  R ) `  (
y  .x.  ( X  .X.  Y ) ) ) ) )
7961, 78syl5ibr 156 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( ( y  .x.  X ) 
.X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( ( -u y  .x.  X )  .X.  Y )  =  (
-u y  .x.  ( X  .X.  Y ) ) ) )
8079ex 115 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
y  e.  NN  ->  ( ( ( y  .x.  X )  .X.  Y
)  =  ( y 
.x.  ( X  .X.  Y ) )  -> 
( ( -u y  .x.  X )  .X.  Y
)  =  ( -u y  .x.  ( X  .X.  Y ) ) ) ) )
814, 8, 12, 16, 20, 35, 60, 80zindd 9342 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  ( N  e.  ZZ  ->  ( ( N  .x.  X
)  .X.  Y )  =  ( N  .x.  ( X  .X.  Y ) ) ) )
82813exp 1202 . . 3  |-  ( R  e.  Ring  ->  ( Y  e.  B  ->  ( X  e.  B  ->  ( N  e.  ZZ  ->  ( ( N  .x.  X
)  .X.  Y )  =  ( N  .x.  ( X  .X.  Y ) ) ) ) ) )
8382com24 87 . 2  |-  ( R  e.  Ring  ->  ( N  e.  ZZ  ->  ( X  e.  B  ->  ( Y  e.  B  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) ) ) ) )
84833imp2 1222 1  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146   ` cfv 5208  (class class class)co 5865   0cc0 7786   1c1 7787    + caddc 7789   -ucneg 8103   NNcn 8890   NN0cn0 9147   ZZcz 9224   Basecbs 12427   +g cplusg 12491   .rcmulr 12492   0gc0g 12625   Grpcgrp 12737   invgcminusg 12738  .gcmg 12842   Ringcrg 12972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8891  df-2 8949  df-3 8950  df-n0 9148  df-z 9225  df-uz 9500  df-fz 9978  df-seqfrec 10414  df-ndx 12430  df-slot 12431  df-base 12433  df-sets 12434  df-plusg 12504  df-mulr 12505  df-0g 12627  df-mgm 12639  df-sgrp 12672  df-mnd 12682  df-grp 12740  df-minusg 12741  df-mulg 12843  df-mgp 12926  df-ur 12936  df-ring 12974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator