| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgass2 | Unicode version | ||
| Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| mulgass2.b |
|
| mulgass2.m |
|
| mulgass2.t |
|
| Ref | Expression |
|---|---|
| mulgass2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5950 |
. . . . . . 7
| |
| 2 | 1 | oveq1d 5958 |
. . . . . 6
|
| 3 | oveq1 5950 |
. . . . . 6
| |
| 4 | 2, 3 | eqeq12d 2219 |
. . . . 5
|
| 5 | oveq1 5950 |
. . . . . . 7
| |
| 6 | 5 | oveq1d 5958 |
. . . . . 6
|
| 7 | oveq1 5950 |
. . . . . 6
| |
| 8 | 6, 7 | eqeq12d 2219 |
. . . . 5
|
| 9 | oveq1 5950 |
. . . . . . 7
| |
| 10 | 9 | oveq1d 5958 |
. . . . . 6
|
| 11 | oveq1 5950 |
. . . . . 6
| |
| 12 | 10, 11 | eqeq12d 2219 |
. . . . 5
|
| 13 | oveq1 5950 |
. . . . . . 7
| |
| 14 | 13 | oveq1d 5958 |
. . . . . 6
|
| 15 | oveq1 5950 |
. . . . . 6
| |
| 16 | 14, 15 | eqeq12d 2219 |
. . . . 5
|
| 17 | oveq1 5950 |
. . . . . . 7
| |
| 18 | 17 | oveq1d 5958 |
. . . . . 6
|
| 19 | oveq1 5950 |
. . . . . 6
| |
| 20 | 18, 19 | eqeq12d 2219 |
. . . . 5
|
| 21 | mulgass2.b |
. . . . . . . 8
| |
| 22 | mulgass2.t |
. . . . . . . 8
| |
| 23 | eqid 2204 |
. . . . . . . 8
| |
| 24 | 21, 22, 23 | ringlz 13747 |
. . . . . . 7
|
| 25 | 24 | 3adant3 1019 |
. . . . . 6
|
| 26 | simp3 1001 |
. . . . . . . 8
| |
| 27 | mulgass2.m |
. . . . . . . . 9
| |
| 28 | 21, 23, 27 | mulg0 13403 |
. . . . . . . 8
|
| 29 | 26, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29 | oveq1d 5958 |
. . . . . 6
|
| 31 | 21, 22 | ringcl 13717 |
. . . . . . . 8
|
| 32 | 31 | 3com23 1211 |
. . . . . . 7
|
| 33 | 21, 23, 27 | mulg0 13403 |
. . . . . . 7
|
| 34 | 32, 33 | syl 14 |
. . . . . 6
|
| 35 | 25, 30, 34 | 3eqtr4d 2247 |
. . . . 5
|
| 36 | oveq1 5950 |
. . . . . . 7
| |
| 37 | simpl1 1002 |
. . . . . . . . . . . 12
| |
| 38 | ringgrp 13705 |
. . . . . . . . . . . 12
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . . . . 11
|
| 40 | nn0z 9391 |
. . . . . . . . . . . 12
| |
| 41 | 40 | adantl 277 |
. . . . . . . . . . 11
|
| 42 | 26 | adantr 276 |
. . . . . . . . . . 11
|
| 43 | eqid 2204 |
. . . . . . . . . . . 12
| |
| 44 | 21, 27, 43 | mulgp1 13433 |
. . . . . . . . . . 11
|
| 45 | 39, 41, 42, 44 | syl3anc 1249 |
. . . . . . . . . 10
|
| 46 | 45 | oveq1d 5958 |
. . . . . . . . 9
|
| 47 | 38 | 3ad2ant1 1020 |
. . . . . . . . . . . 12
|
| 48 | 47 | adantr 276 |
. . . . . . . . . . 11
|
| 49 | 21, 27 | mulgcl 13417 |
. . . . . . . . . . 11
|
| 50 | 48, 41, 42, 49 | syl3anc 1249 |
. . . . . . . . . 10
|
| 51 | simpl2 1003 |
. . . . . . . . . 10
| |
| 52 | 21, 43, 22 | ringdir 13723 |
. . . . . . . . . 10
|
| 53 | 37, 50, 42, 51, 52 | syl13anc 1251 |
. . . . . . . . 9
|
| 54 | 46, 53 | eqtrd 2237 |
. . . . . . . 8
|
| 55 | 32 | adantr 276 |
. . . . . . . . 9
|
| 56 | 21, 27, 43 | mulgp1 13433 |
. . . . . . . . 9
|
| 57 | 39, 41, 55, 56 | syl3anc 1249 |
. . . . . . . 8
|
| 58 | 54, 57 | eqeq12d 2219 |
. . . . . . 7
|
| 59 | 36, 58 | imbitrrid 156 |
. . . . . 6
|
| 60 | 59 | ex 115 |
. . . . 5
|
| 61 | fveq2 5575 |
. . . . . . 7
| |
| 62 | 47 | adantr 276 |
. . . . . . . . . . 11
|
| 63 | nnz 9390 |
. . . . . . . . . . . 12
| |
| 64 | 63 | adantl 277 |
. . . . . . . . . . 11
|
| 65 | 26 | adantr 276 |
. . . . . . . . . . 11
|
| 66 | eqid 2204 |
. . . . . . . . . . . 12
| |
| 67 | 21, 27, 66 | mulgneg 13418 |
. . . . . . . . . . 11
|
| 68 | 62, 64, 65, 67 | syl3anc 1249 |
. . . . . . . . . 10
|
| 69 | 68 | oveq1d 5958 |
. . . . . . . . 9
|
| 70 | simpl1 1002 |
. . . . . . . . . 10
| |
| 71 | 62, 64, 65, 49 | syl3anc 1249 |
. . . . . . . . . 10
|
| 72 | simpl2 1003 |
. . . . . . . . . 10
| |
| 73 | 21, 22, 66, 70, 71, 72 | ringmneg1 13757 |
. . . . . . . . 9
|
| 74 | 69, 73 | eqtrd 2237 |
. . . . . . . 8
|
| 75 | 32 | adantr 276 |
. . . . . . . . 9
|
| 76 | 21, 27, 66 | mulgneg 13418 |
. . . . . . . . 9
|
| 77 | 62, 64, 75, 76 | syl3anc 1249 |
. . . . . . . 8
|
| 78 | 74, 77 | eqeq12d 2219 |
. . . . . . 7
|
| 79 | 61, 78 | imbitrrid 156 |
. . . . . 6
|
| 80 | 79 | ex 115 |
. . . . 5
|
| 81 | 4, 8, 12, 16, 20, 35, 60, 80 | zindd 9490 |
. . . 4
|
| 82 | 81 | 3exp 1204 |
. . 3
|
| 83 | 82 | com24 87 |
. 2
|
| 84 | 83 | 3imp2 1224 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-3 9095 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-seqfrec 10591 df-ndx 12777 df-slot 12778 df-base 12780 df-sets 12781 df-plusg 12864 df-mulr 12865 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 df-minusg 13278 df-mulg 13398 df-mgp 13625 df-ur 13664 df-ring 13702 |
| This theorem is referenced by: mulgass3 13789 mulgrhm 14313 |
| Copyright terms: Public domain | W3C validator |