| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgass2 | Unicode version | ||
| Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| mulgass2.b |
|
| mulgass2.m |
|
| mulgass2.t |
|
| Ref | Expression |
|---|---|
| mulgass2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5932 |
. . . . . . 7
| |
| 2 | 1 | oveq1d 5940 |
. . . . . 6
|
| 3 | oveq1 5932 |
. . . . . 6
| |
| 4 | 2, 3 | eqeq12d 2211 |
. . . . 5
|
| 5 | oveq1 5932 |
. . . . . . 7
| |
| 6 | 5 | oveq1d 5940 |
. . . . . 6
|
| 7 | oveq1 5932 |
. . . . . 6
| |
| 8 | 6, 7 | eqeq12d 2211 |
. . . . 5
|
| 9 | oveq1 5932 |
. . . . . . 7
| |
| 10 | 9 | oveq1d 5940 |
. . . . . 6
|
| 11 | oveq1 5932 |
. . . . . 6
| |
| 12 | 10, 11 | eqeq12d 2211 |
. . . . 5
|
| 13 | oveq1 5932 |
. . . . . . 7
| |
| 14 | 13 | oveq1d 5940 |
. . . . . 6
|
| 15 | oveq1 5932 |
. . . . . 6
| |
| 16 | 14, 15 | eqeq12d 2211 |
. . . . 5
|
| 17 | oveq1 5932 |
. . . . . . 7
| |
| 18 | 17 | oveq1d 5940 |
. . . . . 6
|
| 19 | oveq1 5932 |
. . . . . 6
| |
| 20 | 18, 19 | eqeq12d 2211 |
. . . . 5
|
| 21 | mulgass2.b |
. . . . . . . 8
| |
| 22 | mulgass2.t |
. . . . . . . 8
| |
| 23 | eqid 2196 |
. . . . . . . 8
| |
| 24 | 21, 22, 23 | ringlz 13675 |
. . . . . . 7
|
| 25 | 24 | 3adant3 1019 |
. . . . . 6
|
| 26 | simp3 1001 |
. . . . . . . 8
| |
| 27 | mulgass2.m |
. . . . . . . . 9
| |
| 28 | 21, 23, 27 | mulg0 13331 |
. . . . . . . 8
|
| 29 | 26, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29 | oveq1d 5940 |
. . . . . 6
|
| 31 | 21, 22 | ringcl 13645 |
. . . . . . . 8
|
| 32 | 31 | 3com23 1211 |
. . . . . . 7
|
| 33 | 21, 23, 27 | mulg0 13331 |
. . . . . . 7
|
| 34 | 32, 33 | syl 14 |
. . . . . 6
|
| 35 | 25, 30, 34 | 3eqtr4d 2239 |
. . . . 5
|
| 36 | oveq1 5932 |
. . . . . . 7
| |
| 37 | simpl1 1002 |
. . . . . . . . . . . 12
| |
| 38 | ringgrp 13633 |
. . . . . . . . . . . 12
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . . . . 11
|
| 40 | nn0z 9363 |
. . . . . . . . . . . 12
| |
| 41 | 40 | adantl 277 |
. . . . . . . . . . 11
|
| 42 | 26 | adantr 276 |
. . . . . . . . . . 11
|
| 43 | eqid 2196 |
. . . . . . . . . . . 12
| |
| 44 | 21, 27, 43 | mulgp1 13361 |
. . . . . . . . . . 11
|
| 45 | 39, 41, 42, 44 | syl3anc 1249 |
. . . . . . . . . 10
|
| 46 | 45 | oveq1d 5940 |
. . . . . . . . 9
|
| 47 | 38 | 3ad2ant1 1020 |
. . . . . . . . . . . 12
|
| 48 | 47 | adantr 276 |
. . . . . . . . . . 11
|
| 49 | 21, 27 | mulgcl 13345 |
. . . . . . . . . . 11
|
| 50 | 48, 41, 42, 49 | syl3anc 1249 |
. . . . . . . . . 10
|
| 51 | simpl2 1003 |
. . . . . . . . . 10
| |
| 52 | 21, 43, 22 | ringdir 13651 |
. . . . . . . . . 10
|
| 53 | 37, 50, 42, 51, 52 | syl13anc 1251 |
. . . . . . . . 9
|
| 54 | 46, 53 | eqtrd 2229 |
. . . . . . . 8
|
| 55 | 32 | adantr 276 |
. . . . . . . . 9
|
| 56 | 21, 27, 43 | mulgp1 13361 |
. . . . . . . . 9
|
| 57 | 39, 41, 55, 56 | syl3anc 1249 |
. . . . . . . 8
|
| 58 | 54, 57 | eqeq12d 2211 |
. . . . . . 7
|
| 59 | 36, 58 | imbitrrid 156 |
. . . . . 6
|
| 60 | 59 | ex 115 |
. . . . 5
|
| 61 | fveq2 5561 |
. . . . . . 7
| |
| 62 | 47 | adantr 276 |
. . . . . . . . . . 11
|
| 63 | nnz 9362 |
. . . . . . . . . . . 12
| |
| 64 | 63 | adantl 277 |
. . . . . . . . . . 11
|
| 65 | 26 | adantr 276 |
. . . . . . . . . . 11
|
| 66 | eqid 2196 |
. . . . . . . . . . . 12
| |
| 67 | 21, 27, 66 | mulgneg 13346 |
. . . . . . . . . . 11
|
| 68 | 62, 64, 65, 67 | syl3anc 1249 |
. . . . . . . . . 10
|
| 69 | 68 | oveq1d 5940 |
. . . . . . . . 9
|
| 70 | simpl1 1002 |
. . . . . . . . . 10
| |
| 71 | 62, 64, 65, 49 | syl3anc 1249 |
. . . . . . . . . 10
|
| 72 | simpl2 1003 |
. . . . . . . . . 10
| |
| 73 | 21, 22, 66, 70, 71, 72 | ringmneg1 13685 |
. . . . . . . . 9
|
| 74 | 69, 73 | eqtrd 2229 |
. . . . . . . 8
|
| 75 | 32 | adantr 276 |
. . . . . . . . 9
|
| 76 | 21, 27, 66 | mulgneg 13346 |
. . . . . . . . 9
|
| 77 | 62, 64, 75, 76 | syl3anc 1249 |
. . . . . . . 8
|
| 78 | 74, 77 | eqeq12d 2211 |
. . . . . . 7
|
| 79 | 61, 78 | imbitrrid 156 |
. . . . . 6
|
| 80 | 79 | ex 115 |
. . . . 5
|
| 81 | 4, 8, 12, 16, 20, 35, 60, 80 | zindd 9461 |
. . . 4
|
| 82 | 81 | 3exp 1204 |
. . 3
|
| 83 | 82 | com24 87 |
. 2
|
| 84 | 83 | 3imp2 1224 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-3 9067 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-seqfrec 10557 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-mulg 13326 df-mgp 13553 df-ur 13592 df-ring 13630 |
| This theorem is referenced by: mulgass3 13717 mulgrhm 14241 |
| Copyright terms: Public domain | W3C validator |