ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgass2 Unicode version

Theorem mulgass2 13614
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass2.b  |-  B  =  ( Base `  R
)
mulgass2.m  |-  .x.  =  (.g
`  R )
mulgass2.t  |-  .X.  =  ( .r `  R )
Assertion
Ref Expression
mulgass2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) )

Proof of Theorem mulgass2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5929 . . . . . . 7  |-  ( x  =  0  ->  (
x  .x.  X )  =  ( 0  .x. 
X ) )
21oveq1d 5937 . . . . . 6  |-  ( x  =  0  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( 0 
.x.  X )  .X.  Y ) )
3 oveq1 5929 . . . . . 6  |-  ( x  =  0  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( 0  .x.  ( X  .X.  Y ) ) )
42, 3eqeq12d 2211 . . . . 5  |-  ( x  =  0  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
0  .x.  X )  .X.  Y )  =  ( 0  .x.  ( X 
.X.  Y ) ) ) )
5 oveq1 5929 . . . . . . 7  |-  ( x  =  y  ->  (
x  .x.  X )  =  ( y  .x.  X ) )
65oveq1d 5937 . . . . . 6  |-  ( x  =  y  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( y 
.x.  X )  .X.  Y ) )
7 oveq1 5929 . . . . . 6  |-  ( x  =  y  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( y  .x.  ( X  .X.  Y ) ) )
86, 7eqeq12d 2211 . . . . 5  |-  ( x  =  y  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
y  .x.  X )  .X.  Y )  =  ( y  .x.  ( X 
.X.  Y ) ) ) )
9 oveq1 5929 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  X )  =  ( ( y  +  1 )  .x.  X ) )
109oveq1d 5937 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y ) )
11 oveq1 5929 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
1210, 11eqeq12d 2211 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
( y  +  1 )  .x.  X ) 
.X.  Y )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) ) )
13 oveq1 5929 . . . . . . 7  |-  ( x  =  -u y  ->  (
x  .x.  X )  =  ( -u y  .x.  X ) )
1413oveq1d 5937 . . . . . 6  |-  ( x  =  -u y  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( -u y  .x.  X )  .X.  Y ) )
15 oveq1 5929 . . . . . 6  |-  ( x  =  -u y  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( -u y  .x.  ( X  .X.  Y ) ) )
1614, 15eqeq12d 2211 . . . . 5  |-  ( x  =  -u y  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( ( -u y  .x.  X ) 
.X.  Y )  =  ( -u y  .x.  ( X  .X.  Y ) ) ) )
17 oveq1 5929 . . . . . . 7  |-  ( x  =  N  ->  (
x  .x.  X )  =  ( N  .x.  X ) )
1817oveq1d 5937 . . . . . 6  |-  ( x  =  N  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( N 
.x.  X )  .X.  Y ) )
19 oveq1 5929 . . . . . 6  |-  ( x  =  N  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )
2018, 19eqeq12d 2211 . . . . 5  |-  ( x  =  N  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( ( N  .x.  X )  .X.  Y )  =  ( N  .x.  ( X 
.X.  Y ) ) ) )
21 mulgass2.b . . . . . . . 8  |-  B  =  ( Base `  R
)
22 mulgass2.t . . . . . . . 8  |-  .X.  =  ( .r `  R )
23 eqid 2196 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
2421, 22, 23ringlz 13599 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (
( 0g `  R
)  .X.  Y )  =  ( 0g `  R ) )
25243adant3 1019 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
( 0g `  R
)  .X.  Y )  =  ( 0g `  R ) )
26 simp3 1001 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  X  e.  B )
27 mulgass2.m . . . . . . . . 9  |-  .x.  =  (.g
`  R )
2821, 23, 27mulg0 13255 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  R ) )
2926, 28syl 14 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
0  .x.  X )  =  ( 0g `  R ) )
3029oveq1d 5937 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
( 0  .x.  X
)  .X.  Y )  =  ( ( 0g
`  R )  .X.  Y ) )
3121, 22ringcl 13569 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .X.  Y )  e.  B )
32313com23 1211 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  ( X  .X.  Y )  e.  B )
3321, 23, 27mulg0 13255 . . . . . . 7  |-  ( ( X  .X.  Y )  e.  B  ->  ( 0 
.x.  ( X  .X.  Y ) )  =  ( 0g `  R
) )
3432, 33syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
0  .x.  ( X  .X.  Y ) )  =  ( 0g `  R
) )
3525, 30, 343eqtr4d 2239 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
( 0  .x.  X
)  .X.  Y )  =  ( 0  .x.  ( X  .X.  Y
) ) )
36 oveq1 5929 . . . . . . 7  |-  ( ( ( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( (
( y  .x.  X
)  .X.  Y )
( +g  `  R ) ( X  .X.  Y
) )  =  ( ( y  .x.  ( X  .X.  Y ) ) ( +g  `  R
) ( X  .X.  Y ) ) )
37 simpl1 1002 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  R  e.  Ring )
38 ringgrp 13557 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  R  e. 
Grp )
3937, 38syl 14 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  R  e.  Grp )
40 nn0z 9346 . . . . . . . . . . . 12  |-  ( y  e.  NN0  ->  y  e.  ZZ )
4140adantl 277 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  y  e.  ZZ )
4226adantr 276 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  X  e.  B
)
43 eqid 2196 . . . . . . . . . . . 12  |-  ( +g  `  R )  =  ( +g  `  R )
4421, 27, 43mulgp1 13285 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  R ) X ) )
4539, 41, 42, 44syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( y  +  1 )  .x.  X )  =  ( ( y  .x.  X
) ( +g  `  R
) X ) )
4645oveq1d 5937 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( ( y  .x.  X ) ( +g  `  R ) X ) 
.X.  Y ) )
47383ad2ant1 1020 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  R  e.  Grp )
4847adantr 276 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  R  e.  Grp )
4921, 27mulgcl 13269 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
5048, 41, 42, 49syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( y  .x.  X )  e.  B
)
51 simpl2 1003 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  Y  e.  B
)
5221, 43, 22ringdir 13575 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
( y  .x.  X
)  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
( y  .x.  X
) ( +g  `  R
) X )  .X.  Y )  =  ( ( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) ) )
5337, 50, 42, 51, 52syl13anc 1251 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( y  .x.  X ) ( +g  `  R
) X )  .X.  Y )  =  ( ( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) ) )
5446, 53eqtrd 2229 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) ) )
5532adantr 276 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( X  .X.  Y )  e.  B
)
5621, 27, 43mulgp1 13285 . . . . . . . . 9  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  ( X  .X.  Y )  e.  B )  ->  (
( y  +  1 )  .x.  ( X 
.X.  Y ) )  =  ( ( y 
.x.  ( X  .X.  Y ) ) ( +g  `  R ) ( X  .X.  Y
) ) )
5739, 41, 55, 56syl3anc 1249 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( y  +  1 )  .x.  ( X  .X.  Y ) )  =  ( ( y  .x.  ( X 
.X.  Y ) ) ( +g  `  R
) ( X  .X.  Y ) ) )
5854, 57eqeq12d 2211 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( ( y  +  1 )  .x.  X ) 
.X.  Y )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) )  <-> 
( ( ( y 
.x.  X )  .X.  Y ) ( +g  `  R ) ( X 
.X.  Y ) )  =  ( ( y 
.x.  ( X  .X.  Y ) ) ( +g  `  R ) ( X  .X.  Y
) ) ) )
5936, 58imbitrrid 156 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( y  .x.  X ) 
.X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( y  +  1 )  .x.  ( X 
.X.  Y ) ) ) )
6059ex 115 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
y  e.  NN0  ->  ( ( ( y  .x.  X )  .X.  Y
)  =  ( y 
.x.  ( X  .X.  Y ) )  -> 
( ( ( y  +  1 )  .x.  X )  .X.  Y
)  =  ( ( y  +  1 ) 
.x.  ( X  .X.  Y ) ) ) ) )
61 fveq2 5558 . . . . . . 7  |-  ( ( ( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( ( invg `  R ) `
 ( ( y 
.x.  X )  .X.  Y ) )  =  ( ( invg `  R ) `  (
y  .x.  ( X  .X.  Y ) ) ) )
6247adantr 276 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  R  e.  Grp )
63 nnz 9345 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  y  e.  ZZ )
6463adantl 277 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  y  e.  ZZ )
6526adantr 276 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  X  e.  B
)
66 eqid 2196 . . . . . . . . . . . 12  |-  ( invg `  R )  =  ( invg `  R )
6721, 27, 66mulgneg 13270 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  X )  =  ( ( invg `  R ) `
 ( y  .x.  X ) ) )
6862, 64, 65, 67syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( -u y  .x.  X )  =  ( ( invg `  R ) `  (
y  .x.  X )
) )
6968oveq1d 5937 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( -u y  .x.  X )  .X.  Y )  =  ( ( ( invg `  R ) `  (
y  .x.  X )
)  .X.  Y )
)
70 simpl1 1002 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  R  e.  Ring )
7162, 64, 65, 49syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( y  .x.  X )  e.  B
)
72 simpl2 1003 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  Y  e.  B
)
7321, 22, 66, 70, 71, 72ringmneg1 13609 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( ( invg `  R
) `  ( y  .x.  X ) )  .X.  Y )  =  ( ( invg `  R ) `  (
( y  .x.  X
)  .X.  Y )
) )
7469, 73eqtrd 2229 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( -u y  .x.  X )  .X.  Y )  =  ( ( invg `  R ) `  (
( y  .x.  X
)  .X.  Y )
) )
7532adantr 276 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( X  .X.  Y )  e.  B
)
7621, 27, 66mulgneg 13270 . . . . . . . . 9  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  ( X  .X.  Y )  e.  B )  ->  ( -u y  .x.  ( X 
.X.  Y ) )  =  ( ( invg `  R ) `
 ( y  .x.  ( X  .X.  Y ) ) ) )
7762, 64, 75, 76syl3anc 1249 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( -u y  .x.  ( X  .X.  Y
) )  =  ( ( invg `  R ) `  (
y  .x.  ( X  .X.  Y ) ) ) )
7874, 77eqeq12d 2211 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( (
-u y  .x.  X
)  .X.  Y )  =  ( -u y  .x.  ( X  .X.  Y
) )  <->  ( ( invg `  R ) `
 ( ( y 
.x.  X )  .X.  Y ) )  =  ( ( invg `  R ) `  (
y  .x.  ( X  .X.  Y ) ) ) ) )
7961, 78imbitrrid 156 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( ( y  .x.  X ) 
.X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( ( -u y  .x.  X )  .X.  Y )  =  (
-u y  .x.  ( X  .X.  Y ) ) ) )
8079ex 115 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
y  e.  NN  ->  ( ( ( y  .x.  X )  .X.  Y
)  =  ( y 
.x.  ( X  .X.  Y ) )  -> 
( ( -u y  .x.  X )  .X.  Y
)  =  ( -u y  .x.  ( X  .X.  Y ) ) ) ) )
814, 8, 12, 16, 20, 35, 60, 80zindd 9444 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  ( N  e.  ZZ  ->  ( ( N  .x.  X
)  .X.  Y )  =  ( N  .x.  ( X  .X.  Y ) ) ) )
82813exp 1204 . . 3  |-  ( R  e.  Ring  ->  ( Y  e.  B  ->  ( X  e.  B  ->  ( N  e.  ZZ  ->  ( ( N  .x.  X
)  .X.  Y )  =  ( N  .x.  ( X  .X.  Y ) ) ) ) ) )
8382com24 87 . 2  |-  ( R  e.  Ring  ->  ( N  e.  ZZ  ->  ( X  e.  B  ->  ( Y  e.  B  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) ) ) ) )
84833imp2 1224 1  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   0cc0 7879   1c1 7880    + caddc 7882   -ucneg 8198   NNcn 8990   NN0cn0 9249   ZZcz 9326   Basecbs 12678   +g cplusg 12755   .rcmulr 12756   0gc0g 12927   Grpcgrp 13132   invgcminusg 13133  .gcmg 13249   Ringcrg 13552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-3 9050  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mulg 13250  df-mgp 13477  df-ur 13516  df-ring 13554
This theorem is referenced by:  mulgass3  13641  mulgrhm  14165
  Copyright terms: Public domain W3C validator