Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulgass2 | Unicode version |
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
mulgass2.b | |
mulgass2.m | .g |
mulgass2.t |
Ref | Expression |
---|---|
mulgass2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5872 | . . . . . . 7 | |
2 | 1 | oveq1d 5880 | . . . . . 6 |
3 | oveq1 5872 | . . . . . 6 | |
4 | 2, 3 | eqeq12d 2190 | . . . . 5 |
5 | oveq1 5872 | . . . . . . 7 | |
6 | 5 | oveq1d 5880 | . . . . . 6 |
7 | oveq1 5872 | . . . . . 6 | |
8 | 6, 7 | eqeq12d 2190 | . . . . 5 |
9 | oveq1 5872 | . . . . . . 7 | |
10 | 9 | oveq1d 5880 | . . . . . 6 |
11 | oveq1 5872 | . . . . . 6 | |
12 | 10, 11 | eqeq12d 2190 | . . . . 5 |
13 | oveq1 5872 | . . . . . . 7 | |
14 | 13 | oveq1d 5880 | . . . . . 6 |
15 | oveq1 5872 | . . . . . 6 | |
16 | 14, 15 | eqeq12d 2190 | . . . . 5 |
17 | oveq1 5872 | . . . . . . 7 | |
18 | 17 | oveq1d 5880 | . . . . . 6 |
19 | oveq1 5872 | . . . . . 6 | |
20 | 18, 19 | eqeq12d 2190 | . . . . 5 |
21 | mulgass2.b | . . . . . . . 8 | |
22 | mulgass2.t | . . . . . . . 8 | |
23 | eqid 2175 | . . . . . . . 8 | |
24 | 21, 22, 23 | ringlz 13014 | . . . . . . 7 |
25 | 24 | 3adant3 1017 | . . . . . 6 |
26 | simp3 999 | . . . . . . . 8 | |
27 | mulgass2.m | . . . . . . . . 9 .g | |
28 | 21, 23, 27 | mulg0 12847 | . . . . . . . 8 |
29 | 26, 28 | syl 14 | . . . . . . 7 |
30 | 29 | oveq1d 5880 | . . . . . 6 |
31 | 21, 22 | ringcl 12989 | . . . . . . . 8 |
32 | 31 | 3com23 1209 | . . . . . . 7 |
33 | 21, 23, 27 | mulg0 12847 | . . . . . . 7 |
34 | 32, 33 | syl 14 | . . . . . 6 |
35 | 25, 30, 34 | 3eqtr4d 2218 | . . . . 5 |
36 | oveq1 5872 | . . . . . . 7 | |
37 | simpl1 1000 | . . . . . . . . . . . 12 | |
38 | ringgrp 12977 | . . . . . . . . . . . 12 | |
39 | 37, 38 | syl 14 | . . . . . . . . . . 11 |
40 | nn0z 9244 | . . . . . . . . . . . 12 | |
41 | 40 | adantl 277 | . . . . . . . . . . 11 |
42 | 26 | adantr 276 | . . . . . . . . . . 11 |
43 | eqid 2175 | . . . . . . . . . . . 12 | |
44 | 21, 27, 43 | mulgp1 12874 | . . . . . . . . . . 11 |
45 | 39, 41, 42, 44 | syl3anc 1238 | . . . . . . . . . 10 |
46 | 45 | oveq1d 5880 | . . . . . . . . 9 |
47 | 38 | 3ad2ant1 1018 | . . . . . . . . . . . 12 |
48 | 47 | adantr 276 | . . . . . . . . . . 11 |
49 | 21, 27 | mulgcl 12859 | . . . . . . . . . . 11 |
50 | 48, 41, 42, 49 | syl3anc 1238 | . . . . . . . . . 10 |
51 | simpl2 1001 | . . . . . . . . . 10 | |
52 | 21, 43, 22 | ringdir 12995 | . . . . . . . . . 10 |
53 | 37, 50, 42, 51, 52 | syl13anc 1240 | . . . . . . . . 9 |
54 | 46, 53 | eqtrd 2208 | . . . . . . . 8 |
55 | 32 | adantr 276 | . . . . . . . . 9 |
56 | 21, 27, 43 | mulgp1 12874 | . . . . . . . . 9 |
57 | 39, 41, 55, 56 | syl3anc 1238 | . . . . . . . 8 |
58 | 54, 57 | eqeq12d 2190 | . . . . . . 7 |
59 | 36, 58 | syl5ibr 156 | . . . . . 6 |
60 | 59 | ex 115 | . . . . 5 |
61 | fveq2 5507 | . . . . . . 7 | |
62 | 47 | adantr 276 | . . . . . . . . . . 11 |
63 | nnz 9243 | . . . . . . . . . . . 12 | |
64 | 63 | adantl 277 | . . . . . . . . . . 11 |
65 | 26 | adantr 276 | . . . . . . . . . . 11 |
66 | eqid 2175 | . . . . . . . . . . . 12 | |
67 | 21, 27, 66 | mulgneg 12860 | . . . . . . . . . . 11 |
68 | 62, 64, 65, 67 | syl3anc 1238 | . . . . . . . . . 10 |
69 | 68 | oveq1d 5880 | . . . . . . . . 9 |
70 | simpl1 1000 | . . . . . . . . . 10 | |
71 | 62, 64, 65, 49 | syl3anc 1238 | . . . . . . . . . 10 |
72 | simpl2 1001 | . . . . . . . . . 10 | |
73 | 21, 22, 66, 70, 71, 72 | ringmneg1 13022 | . . . . . . . . 9 |
74 | 69, 73 | eqtrd 2208 | . . . . . . . 8 |
75 | 32 | adantr 276 | . . . . . . . . 9 |
76 | 21, 27, 66 | mulgneg 12860 | . . . . . . . . 9 |
77 | 62, 64, 75, 76 | syl3anc 1238 | . . . . . . . 8 |
78 | 74, 77 | eqeq12d 2190 | . . . . . . 7 |
79 | 61, 78 | syl5ibr 156 | . . . . . 6 |
80 | 79 | ex 115 | . . . . 5 |
81 | 4, 8, 12, 16, 20, 35, 60, 80 | zindd 9342 | . . . 4 |
82 | 81 | 3exp 1202 | . . 3 |
83 | 82 | com24 87 | . 2 |
84 | 83 | 3imp2 1222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 cfv 5208 (class class class)co 5865 cc0 7786 c1 7787 caddc 7789 cneg 8103 cn 8890 cn0 9147 cz 9224 cbs 12427 cplusg 12491 cmulr 12492 c0g 12625 cgrp 12737 cminusg 12738 .gcmg 12842 crg 12972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-2 8949 df-3 8950 df-n0 9148 df-z 9225 df-uz 9500 df-fz 9978 df-seqfrec 10414 df-ndx 12430 df-slot 12431 df-base 12433 df-sets 12434 df-plusg 12504 df-mulr 12505 df-0g 12627 df-mgm 12639 df-sgrp 12672 df-mnd 12682 df-grp 12740 df-minusg 12741 df-mulg 12843 df-mgp 12926 df-ur 12936 df-ring 12974 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |