| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgass2 | Unicode version | ||
| Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| mulgass2.b |
|
| mulgass2.m |
|
| mulgass2.t |
|
| Ref | Expression |
|---|---|
| mulgass2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6007 |
. . . . . . 7
| |
| 2 | 1 | oveq1d 6015 |
. . . . . 6
|
| 3 | oveq1 6007 |
. . . . . 6
| |
| 4 | 2, 3 | eqeq12d 2244 |
. . . . 5
|
| 5 | oveq1 6007 |
. . . . . . 7
| |
| 6 | 5 | oveq1d 6015 |
. . . . . 6
|
| 7 | oveq1 6007 |
. . . . . 6
| |
| 8 | 6, 7 | eqeq12d 2244 |
. . . . 5
|
| 9 | oveq1 6007 |
. . . . . . 7
| |
| 10 | 9 | oveq1d 6015 |
. . . . . 6
|
| 11 | oveq1 6007 |
. . . . . 6
| |
| 12 | 10, 11 | eqeq12d 2244 |
. . . . 5
|
| 13 | oveq1 6007 |
. . . . . . 7
| |
| 14 | 13 | oveq1d 6015 |
. . . . . 6
|
| 15 | oveq1 6007 |
. . . . . 6
| |
| 16 | 14, 15 | eqeq12d 2244 |
. . . . 5
|
| 17 | oveq1 6007 |
. . . . . . 7
| |
| 18 | 17 | oveq1d 6015 |
. . . . . 6
|
| 19 | oveq1 6007 |
. . . . . 6
| |
| 20 | 18, 19 | eqeq12d 2244 |
. . . . 5
|
| 21 | mulgass2.b |
. . . . . . . 8
| |
| 22 | mulgass2.t |
. . . . . . . 8
| |
| 23 | eqid 2229 |
. . . . . . . 8
| |
| 24 | 21, 22, 23 | ringlz 14001 |
. . . . . . 7
|
| 25 | 24 | 3adant3 1041 |
. . . . . 6
|
| 26 | simp3 1023 |
. . . . . . . 8
| |
| 27 | mulgass2.m |
. . . . . . . . 9
| |
| 28 | 21, 23, 27 | mulg0 13657 |
. . . . . . . 8
|
| 29 | 26, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29 | oveq1d 6015 |
. . . . . 6
|
| 31 | 21, 22 | ringcl 13971 |
. . . . . . . 8
|
| 32 | 31 | 3com23 1233 |
. . . . . . 7
|
| 33 | 21, 23, 27 | mulg0 13657 |
. . . . . . 7
|
| 34 | 32, 33 | syl 14 |
. . . . . 6
|
| 35 | 25, 30, 34 | 3eqtr4d 2272 |
. . . . 5
|
| 36 | oveq1 6007 |
. . . . . . 7
| |
| 37 | simpl1 1024 |
. . . . . . . . . . . 12
| |
| 38 | ringgrp 13959 |
. . . . . . . . . . . 12
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . . . . 11
|
| 40 | nn0z 9462 |
. . . . . . . . . . . 12
| |
| 41 | 40 | adantl 277 |
. . . . . . . . . . 11
|
| 42 | 26 | adantr 276 |
. . . . . . . . . . 11
|
| 43 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 44 | 21, 27, 43 | mulgp1 13687 |
. . . . . . . . . . 11
|
| 45 | 39, 41, 42, 44 | syl3anc 1271 |
. . . . . . . . . 10
|
| 46 | 45 | oveq1d 6015 |
. . . . . . . . 9
|
| 47 | 38 | 3ad2ant1 1042 |
. . . . . . . . . . . 12
|
| 48 | 47 | adantr 276 |
. . . . . . . . . . 11
|
| 49 | 21, 27 | mulgcl 13671 |
. . . . . . . . . . 11
|
| 50 | 48, 41, 42, 49 | syl3anc 1271 |
. . . . . . . . . 10
|
| 51 | simpl2 1025 |
. . . . . . . . . 10
| |
| 52 | 21, 43, 22 | ringdir 13977 |
. . . . . . . . . 10
|
| 53 | 37, 50, 42, 51, 52 | syl13anc 1273 |
. . . . . . . . 9
|
| 54 | 46, 53 | eqtrd 2262 |
. . . . . . . 8
|
| 55 | 32 | adantr 276 |
. . . . . . . . 9
|
| 56 | 21, 27, 43 | mulgp1 13687 |
. . . . . . . . 9
|
| 57 | 39, 41, 55, 56 | syl3anc 1271 |
. . . . . . . 8
|
| 58 | 54, 57 | eqeq12d 2244 |
. . . . . . 7
|
| 59 | 36, 58 | imbitrrid 156 |
. . . . . 6
|
| 60 | 59 | ex 115 |
. . . . 5
|
| 61 | fveq2 5626 |
. . . . . . 7
| |
| 62 | 47 | adantr 276 |
. . . . . . . . . . 11
|
| 63 | nnz 9461 |
. . . . . . . . . . . 12
| |
| 64 | 63 | adantl 277 |
. . . . . . . . . . 11
|
| 65 | 26 | adantr 276 |
. . . . . . . . . . 11
|
| 66 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 67 | 21, 27, 66 | mulgneg 13672 |
. . . . . . . . . . 11
|
| 68 | 62, 64, 65, 67 | syl3anc 1271 |
. . . . . . . . . 10
|
| 69 | 68 | oveq1d 6015 |
. . . . . . . . 9
|
| 70 | simpl1 1024 |
. . . . . . . . . 10
| |
| 71 | 62, 64, 65, 49 | syl3anc 1271 |
. . . . . . . . . 10
|
| 72 | simpl2 1025 |
. . . . . . . . . 10
| |
| 73 | 21, 22, 66, 70, 71, 72 | ringmneg1 14011 |
. . . . . . . . 9
|
| 74 | 69, 73 | eqtrd 2262 |
. . . . . . . 8
|
| 75 | 32 | adantr 276 |
. . . . . . . . 9
|
| 76 | 21, 27, 66 | mulgneg 13672 |
. . . . . . . . 9
|
| 77 | 62, 64, 75, 76 | syl3anc 1271 |
. . . . . . . 8
|
| 78 | 74, 77 | eqeq12d 2244 |
. . . . . . 7
|
| 79 | 61, 78 | imbitrrid 156 |
. . . . . 6
|
| 80 | 79 | ex 115 |
. . . . 5
|
| 81 | 4, 8, 12, 16, 20, 35, 60, 80 | zindd 9561 |
. . . 4
|
| 82 | 81 | 3exp 1226 |
. . 3
|
| 83 | 82 | com24 87 |
. 2
|
| 84 | 83 | 3imp2 1246 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-2 9165 df-3 9166 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-seqfrec 10665 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-plusg 13118 df-mulr 13119 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-mulg 13652 df-mgp 13879 df-ur 13918 df-ring 13956 |
| This theorem is referenced by: mulgass3 14043 mulgrhm 14567 |
| Copyright terms: Public domain | W3C validator |