ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplcan Unicode version

Theorem grplcan 13137
Description: Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.)
Hypotheses
Ref Expression
grplcan.b  |-  B  =  ( Base `  G
)
grplcan.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
grplcan  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Z  .+  X
)  =  ( Z 
.+  Y )  <->  X  =  Y ) )

Proof of Theorem grplcan
StepHypRef Expression
1 oveq2 5927 . . . . . 6  |-  ( ( Z  .+  X )  =  ( Z  .+  Y )  ->  (
( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) )  =  ( ( ( invg `  G ) `
 Z )  .+  ( Z  .+  Y ) ) )
21adantl 277 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( Z  .+  X )  =  ( Z  .+  Y ) )  ->  ( (
( invg `  G ) `  Z
)  .+  ( Z  .+  X ) )  =  ( ( ( invg `  G ) `
 Z )  .+  ( Z  .+  Y ) ) )
3 grplcan.b . . . . . . . . . . 11  |-  B  =  ( Base `  G
)
4 grplcan.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
5 eqid 2193 . . . . . . . . . . 11  |-  ( 0g
`  G )  =  ( 0g `  G
)
6 eqid 2193 . . . . . . . . . . 11  |-  ( invg `  G )  =  ( invg `  G )
73, 4, 5, 6grplinv 13125 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( ( invg `  G ) `
 Z )  .+  Z )  =  ( 0g `  G ) )
87adantlr 477 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( (
( invg `  G ) `  Z
)  .+  Z )  =  ( 0g `  G ) )
98oveq1d 5934 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( (
( ( invg `  G ) `  Z
)  .+  Z )  .+  X )  =  ( ( 0g `  G
)  .+  X )
)
103, 6grpinvcl 13123 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( invg `  G ) `  Z
)  e.  B )
1110adantrl 478 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  (
( invg `  G ) `  Z
)  e.  B )
12 simprr 531 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
13 simprl 529 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
1411, 12, 133jca 1179 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Z
)  e.  B  /\  Z  e.  B  /\  X  e.  B )
)
153, 4grpass 13084 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 Z )  e.  B  /\  Z  e.  B  /\  X  e.  B ) )  -> 
( ( ( ( invg `  G
) `  Z )  .+  Z )  .+  X
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) ) )
1614, 15syldan 282 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( invg `  G ) `
 Z )  .+  Z )  .+  X
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) ) )
1716anassrs 400 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( (
( ( invg `  G ) `  Z
)  .+  Z )  .+  X )  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) ) )
183, 4, 5grplid 13106 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( 0g `  G )  .+  X
)  =  X )
1918adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( ( 0g `  G )  .+  X )  =  X )
209, 17, 193eqtr3d 2234 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( (
( invg `  G ) `  Z
)  .+  ( Z  .+  X ) )  =  X )
2120adantrl 478 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( ( invg `  G ) `
 Z )  .+  ( Z  .+  X ) )  =  X )
2221adantr 276 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( Z  .+  X )  =  ( Z  .+  Y ) )  ->  ( (
( invg `  G ) `  Z
)  .+  ( Z  .+  X ) )  =  X )
237adantrl 478 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Z
)  .+  Z )  =  ( 0g `  G ) )
2423oveq1d 5934 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( invg `  G ) `
 Z )  .+  Z )  .+  Y
)  =  ( ( 0g `  G ) 
.+  Y ) )
2510adantrl 478 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( invg `  G ) `  Z
)  e.  B )
26 simprr 531 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
27 simprl 529 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
2825, 26, 273jca 1179 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Z
)  e.  B  /\  Z  e.  B  /\  Y  e.  B )
)
293, 4grpass 13084 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 Z )  e.  B  /\  Z  e.  B  /\  Y  e.  B ) )  -> 
( ( ( ( invg `  G
) `  Z )  .+  Z )  .+  Y
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) ) )
3028, 29syldan 282 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( invg `  G ) `
 Z )  .+  Z )  .+  Y
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) ) )
313, 4, 5grplid 13106 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  Y
)  =  Y )
3231adantrr 479 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( 0g `  G
)  .+  Y )  =  Y )
3324, 30, 323eqtr3d 2234 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) )  =  Y )
3433adantlr 477 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( ( invg `  G ) `
 Z )  .+  ( Z  .+  Y ) )  =  Y )
3534adantr 276 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( Z  .+  X )  =  ( Z  .+  Y ) )  ->  ( (
( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) )  =  Y )
362, 22, 353eqtr3d 2234 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( Z  .+  X )  =  ( Z  .+  Y ) )  ->  X  =  Y )
3736exp53 377 . . 3  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( Y  e.  B  -> 
( Z  e.  B  ->  ( ( Z  .+  X )  =  ( Z  .+  Y )  ->  X  =  Y ) ) ) ) )
38373imp2 1224 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Z  .+  X
)  =  ( Z 
.+  Y )  ->  X  =  Y )
)
39 oveq2 5927 . 2  |-  ( X  =  Y  ->  ( Z  .+  X )  =  ( Z  .+  Y
) )
4038, 39impbid1 142 1  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Z  .+  X
)  =  ( Z 
.+  Y )  <->  X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   0gc0g 12870   Grpcgrp 13075   invgcminusg 13076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079
This theorem is referenced by:  grpidrcan  13140  grpinvinv  13142  grplmulf1o  13149  grplactcnv  13177  conjghm  13349  conjnmzb  13353  rnglz  13444  ringcom  13530  ringlz  13542  lmodlcan  13803  lmodfopne  13825
  Copyright terms: Public domain W3C validator