ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplcan Unicode version

Theorem grplcan 12956
Description: Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.)
Hypotheses
Ref Expression
grplcan.b  |-  B  =  ( Base `  G
)
grplcan.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
grplcan  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Z  .+  X
)  =  ( Z 
.+  Y )  <->  X  =  Y ) )

Proof of Theorem grplcan
StepHypRef Expression
1 oveq2 5896 . . . . . 6  |-  ( ( Z  .+  X )  =  ( Z  .+  Y )  ->  (
( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) )  =  ( ( ( invg `  G ) `
 Z )  .+  ( Z  .+  Y ) ) )
21adantl 277 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( Z  .+  X )  =  ( Z  .+  Y ) )  ->  ( (
( invg `  G ) `  Z
)  .+  ( Z  .+  X ) )  =  ( ( ( invg `  G ) `
 Z )  .+  ( Z  .+  Y ) ) )
3 grplcan.b . . . . . . . . . . 11  |-  B  =  ( Base `  G
)
4 grplcan.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
5 eqid 2187 . . . . . . . . . . 11  |-  ( 0g
`  G )  =  ( 0g `  G
)
6 eqid 2187 . . . . . . . . . . 11  |-  ( invg `  G )  =  ( invg `  G )
73, 4, 5, 6grplinv 12944 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( ( invg `  G ) `
 Z )  .+  Z )  =  ( 0g `  G ) )
87adantlr 477 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( (
( invg `  G ) `  Z
)  .+  Z )  =  ( 0g `  G ) )
98oveq1d 5903 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( (
( ( invg `  G ) `  Z
)  .+  Z )  .+  X )  =  ( ( 0g `  G
)  .+  X )
)
103, 6grpinvcl 12942 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( invg `  G ) `  Z
)  e.  B )
1110adantrl 478 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  (
( invg `  G ) `  Z
)  e.  B )
12 simprr 531 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
13 simprl 529 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
1411, 12, 133jca 1178 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Z
)  e.  B  /\  Z  e.  B  /\  X  e.  B )
)
153, 4grpass 12905 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 Z )  e.  B  /\  Z  e.  B  /\  X  e.  B ) )  -> 
( ( ( ( invg `  G
) `  Z )  .+  Z )  .+  X
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) ) )
1614, 15syldan 282 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( invg `  G ) `
 Z )  .+  Z )  .+  X
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) ) )
1716anassrs 400 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( (
( ( invg `  G ) `  Z
)  .+  Z )  .+  X )  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) ) )
183, 4, 5grplid 12925 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( 0g `  G )  .+  X
)  =  X )
1918adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( ( 0g `  G )  .+  X )  =  X )
209, 17, 193eqtr3d 2228 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( (
( invg `  G ) `  Z
)  .+  ( Z  .+  X ) )  =  X )
2120adantrl 478 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( ( invg `  G ) `
 Z )  .+  ( Z  .+  X ) )  =  X )
2221adantr 276 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( Z  .+  X )  =  ( Z  .+  Y ) )  ->  ( (
( invg `  G ) `  Z
)  .+  ( Z  .+  X ) )  =  X )
237adantrl 478 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Z
)  .+  Z )  =  ( 0g `  G ) )
2423oveq1d 5903 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( invg `  G ) `
 Z )  .+  Z )  .+  Y
)  =  ( ( 0g `  G ) 
.+  Y ) )
2510adantrl 478 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( invg `  G ) `  Z
)  e.  B )
26 simprr 531 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
27 simprl 529 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
2825, 26, 273jca 1178 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Z
)  e.  B  /\  Z  e.  B  /\  Y  e.  B )
)
293, 4grpass 12905 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 Z )  e.  B  /\  Z  e.  B  /\  Y  e.  B ) )  -> 
( ( ( ( invg `  G
) `  Z )  .+  Z )  .+  Y
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) ) )
3028, 29syldan 282 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( invg `  G ) `
 Z )  .+  Z )  .+  Y
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) ) )
313, 4, 5grplid 12925 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  Y
)  =  Y )
3231adantrr 479 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( 0g `  G
)  .+  Y )  =  Y )
3324, 30, 323eqtr3d 2228 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) )  =  Y )
3433adantlr 477 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( ( invg `  G ) `
 Z )  .+  ( Z  .+  Y ) )  =  Y )
3534adantr 276 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( Z  .+  X )  =  ( Z  .+  Y ) )  ->  ( (
( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) )  =  Y )
362, 22, 353eqtr3d 2228 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( Z  .+  X )  =  ( Z  .+  Y ) )  ->  X  =  Y )
3736exp53 377 . . 3  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( Y  e.  B  -> 
( Z  e.  B  ->  ( ( Z  .+  X )  =  ( Z  .+  Y )  ->  X  =  Y ) ) ) ) )
38373imp2 1223 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Z  .+  X
)  =  ( Z 
.+  Y )  ->  X  =  Y )
)
39 oveq2 5896 . 2  |-  ( X  =  Y  ->  ( Z  .+  X )  =  ( Z  .+  Y
) )
4038, 39impbid1 142 1  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Z  .+  X
)  =  ( Z 
.+  Y )  <->  X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   ` cfv 5228  (class class class)co 5888   Basecbs 12475   +g cplusg 12550   0gc0g 12722   Grpcgrp 12896   invgcminusg 12897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-inn 8933  df-2 8991  df-ndx 12478  df-slot 12479  df-base 12481  df-plusg 12563  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12837  df-grp 12899  df-minusg 12900
This theorem is referenced by:  grpidrcan  12959  grpinvinv  12961  grplmulf1o  12968  grplactcnv  12996  rnglz  13187  ringcom  13268  ringlz  13280  lmodlcan  13457  lmodfopne  13479
  Copyright terms: Public domain W3C validator