ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotritrieq Unicode version

Theorem sotritrieq 4303
Description: A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 13-Dec-2019.)
Hypotheses
Ref Expression
sotritric.or  |-  R  Or  A
sotritric.tri  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
Assertion
Ref Expression
sotritrieq  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B  =  C  <->  -.  ( B R C  \/  C R B ) ) )

Proof of Theorem sotritrieq
StepHypRef Expression
1 sotritric.or . . . . . . 7  |-  R  Or  A
2 sonr 4295 . . . . . . 7  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
31, 2mpan 421 . . . . . 6  |-  ( B  e.  A  ->  -.  B R B )
4 breq2 3986 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  B R C ) )
54notbid 657 . . . . . 6  |-  ( B  =  C  ->  ( -.  B R B  <->  -.  B R C ) )
63, 5syl5ibcom 154 . . . . 5  |-  ( B  e.  A  ->  ( B  =  C  ->  -.  B R C ) )
7 breq1 3985 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  C R B ) )
87notbid 657 . . . . . 6  |-  ( B  =  C  ->  ( -.  B R B  <->  -.  C R B ) )
93, 8syl5ibcom 154 . . . . 5  |-  ( B  e.  A  ->  ( B  =  C  ->  -.  C R B ) )
106, 9jcad 305 . . . 4  |-  ( B  e.  A  ->  ( B  =  C  ->  ( -.  B R C  /\  -.  C R B ) ) )
11 ioran 742 . . . 4  |-  ( -.  ( B R C  \/  C R B )  <->  ( -.  B R C  /\  -.  C R B ) )
1210, 11syl6ibr 161 . . 3  |-  ( B  e.  A  ->  ( B  =  C  ->  -.  ( B R C  \/  C R B ) ) )
1312adantr 274 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B  =  C  ->  -.  ( B R C  \/  C R B ) ) )
14 sotritric.tri . . 3  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
15 3orrot 974 . . . . . . 7  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( B  =  C  \/  C R B  \/  B R C ) )
16 3orcomb 977 . . . . . . 7  |-  ( ( B  =  C  \/  C R B  \/  B R C )  <->  ( B  =  C  \/  B R C  \/  C R B ) )
17 3orass 971 . . . . . . 7  |-  ( ( B  =  C  \/  B R C  \/  C R B )  <->  ( B  =  C  \/  ( B R C  \/  C R B ) ) )
1815, 16, 173bitri 205 . . . . . 6  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( B  =  C  \/  ( B R C  \/  C R B ) ) )
1918biimpi 119 . . . . 5  |-  ( ( B R C  \/  B  =  C  \/  C R B )  -> 
( B  =  C  \/  ( B R C  \/  C R B ) ) )
2019orcomd 719 . . . 4  |-  ( ( B R C  \/  B  =  C  \/  C R B )  -> 
( ( B R C  \/  C R B )  \/  B  =  C ) )
2120ord 714 . . 3  |-  ( ( B R C  \/  B  =  C  \/  C R B )  -> 
( -.  ( B R C  \/  C R B )  ->  B  =  C ) )
2214, 21syl 14 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( -.  ( B R C  \/  C R B )  ->  B  =  C ) )
2313, 22impbid 128 1  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B  =  C  <->  -.  ( B R C  \/  C R B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    \/ w3o 967    = wceq 1343    e. wcel 2136   class class class wbr 3982    Or wor 4273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-po 4274  df-iso 4275
This theorem is referenced by:  distrlem4prl  7525  distrlem4pru  7526
  Copyright terms: Public domain W3C validator