ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotritrieq Unicode version

Theorem sotritrieq 4326
Description: A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 13-Dec-2019.)
Hypotheses
Ref Expression
sotritric.or  |-  R  Or  A
sotritric.tri  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
Assertion
Ref Expression
sotritrieq  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B  =  C  <->  -.  ( B R C  \/  C R B ) ) )

Proof of Theorem sotritrieq
StepHypRef Expression
1 sotritric.or . . . . . . 7  |-  R  Or  A
2 sonr 4318 . . . . . . 7  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
31, 2mpan 424 . . . . . 6  |-  ( B  e.  A  ->  -.  B R B )
4 breq2 4008 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  B R C ) )
54notbid 667 . . . . . 6  |-  ( B  =  C  ->  ( -.  B R B  <->  -.  B R C ) )
63, 5syl5ibcom 155 . . . . 5  |-  ( B  e.  A  ->  ( B  =  C  ->  -.  B R C ) )
7 breq1 4007 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  C R B ) )
87notbid 667 . . . . . 6  |-  ( B  =  C  ->  ( -.  B R B  <->  -.  C R B ) )
93, 8syl5ibcom 155 . . . . 5  |-  ( B  e.  A  ->  ( B  =  C  ->  -.  C R B ) )
106, 9jcad 307 . . . 4  |-  ( B  e.  A  ->  ( B  =  C  ->  ( -.  B R C  /\  -.  C R B ) ) )
11 ioran 752 . . . 4  |-  ( -.  ( B R C  \/  C R B )  <->  ( -.  B R C  /\  -.  C R B ) )
1210, 11imbitrrdi 162 . . 3  |-  ( B  e.  A  ->  ( B  =  C  ->  -.  ( B R C  \/  C R B ) ) )
1312adantr 276 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B  =  C  ->  -.  ( B R C  \/  C R B ) ) )
14 sotritric.tri . . 3  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
15 3orrot 984 . . . . . . 7  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( B  =  C  \/  C R B  \/  B R C ) )
16 3orcomb 987 . . . . . . 7  |-  ( ( B  =  C  \/  C R B  \/  B R C )  <->  ( B  =  C  \/  B R C  \/  C R B ) )
17 3orass 981 . . . . . . 7  |-  ( ( B  =  C  \/  B R C  \/  C R B )  <->  ( B  =  C  \/  ( B R C  \/  C R B ) ) )
1815, 16, 173bitri 206 . . . . . 6  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( B  =  C  \/  ( B R C  \/  C R B ) ) )
1918biimpi 120 . . . . 5  |-  ( ( B R C  \/  B  =  C  \/  C R B )  -> 
( B  =  C  \/  ( B R C  \/  C R B ) ) )
2019orcomd 729 . . . 4  |-  ( ( B R C  \/  B  =  C  \/  C R B )  -> 
( ( B R C  \/  C R B )  \/  B  =  C ) )
2120ord 724 . . 3  |-  ( ( B R C  \/  B  =  C  \/  C R B )  -> 
( -.  ( B R C  \/  C R B )  ->  B  =  C ) )
2214, 21syl 14 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( -.  ( B R C  \/  C R B )  ->  B  =  C ) )
2313, 22impbid 129 1  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B  =  C  <->  -.  ( B R C  \/  C R B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    \/ w3o 977    = wceq 1353    e. wcel 2148   class class class wbr 4004    Or wor 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-po 4297  df-iso 4298
This theorem is referenced by:  distrlem4prl  7583  distrlem4pru  7584
  Copyright terms: Public domain W3C validator