| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sotritrieq | Unicode version | ||
| Description: A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 13-Dec-2019.) |
| Ref | Expression |
|---|---|
| sotritric.or |
|
| sotritric.tri |
|
| Ref | Expression |
|---|---|
| sotritrieq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sotritric.or |
. . . . . . 7
| |
| 2 | sonr 4382 |
. . . . . . 7
| |
| 3 | 1, 2 | mpan 424 |
. . . . . 6
|
| 4 | breq2 4063 |
. . . . . . 7
| |
| 5 | 4 | notbid 669 |
. . . . . 6
|
| 6 | 3, 5 | syl5ibcom 155 |
. . . . 5
|
| 7 | breq1 4062 |
. . . . . . 7
| |
| 8 | 7 | notbid 669 |
. . . . . 6
|
| 9 | 3, 8 | syl5ibcom 155 |
. . . . 5
|
| 10 | 6, 9 | jcad 307 |
. . . 4
|
| 11 | ioran 754 |
. . . 4
| |
| 12 | 10, 11 | imbitrrdi 162 |
. . 3
|
| 13 | 12 | adantr 276 |
. 2
|
| 14 | sotritric.tri |
. . 3
| |
| 15 | 3orrot 987 |
. . . . . . 7
| |
| 16 | 3orcomb 990 |
. . . . . . 7
| |
| 17 | 3orass 984 |
. . . . . . 7
| |
| 18 | 15, 16, 17 | 3bitri 206 |
. . . . . 6
|
| 19 | 18 | biimpi 120 |
. . . . 5
|
| 20 | 19 | orcomd 731 |
. . . 4
|
| 21 | 20 | ord 726 |
. . 3
|
| 22 | 14, 21 | syl 14 |
. 2
|
| 23 | 13, 22 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-po 4361 df-iso 4362 |
| This theorem is referenced by: distrlem4prl 7732 distrlem4pru 7733 |
| Copyright terms: Public domain | W3C validator |