Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sotritrieq | Unicode version |
Description: A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 13-Dec-2019.) |
Ref | Expression |
---|---|
sotritric.or | |
sotritric.tri |
Ref | Expression |
---|---|
sotritrieq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sotritric.or | . . . . . . 7 | |
2 | sonr 4295 | . . . . . . 7 | |
3 | 1, 2 | mpan 421 | . . . . . 6 |
4 | breq2 3986 | . . . . . . 7 | |
5 | 4 | notbid 657 | . . . . . 6 |
6 | 3, 5 | syl5ibcom 154 | . . . . 5 |
7 | breq1 3985 | . . . . . . 7 | |
8 | 7 | notbid 657 | . . . . . 6 |
9 | 3, 8 | syl5ibcom 154 | . . . . 5 |
10 | 6, 9 | jcad 305 | . . . 4 |
11 | ioran 742 | . . . 4 | |
12 | 10, 11 | syl6ibr 161 | . . 3 |
13 | 12 | adantr 274 | . 2 |
14 | sotritric.tri | . . 3 | |
15 | 3orrot 974 | . . . . . . 7 | |
16 | 3orcomb 977 | . . . . . . 7 | |
17 | 3orass 971 | . . . . . . 7 | |
18 | 15, 16, 17 | 3bitri 205 | . . . . . 6 |
19 | 18 | biimpi 119 | . . . . 5 |
20 | 19 | orcomd 719 | . . . 4 |
21 | 20 | ord 714 | . . 3 |
22 | 14, 21 | syl 14 | . 2 |
23 | 13, 22 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3o 967 wceq 1343 wcel 2136 class class class wbr 3982 wor 4273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-po 4274 df-iso 4275 |
This theorem is referenced by: distrlem4prl 7525 distrlem4pru 7526 |
Copyright terms: Public domain | W3C validator |