ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orass Unicode version

Theorem 3orass 1005
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
3orass  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )

Proof of Theorem 3orass
StepHypRef Expression
1 df-3or 1003 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/  ch ) )
2 orass 772 . 2  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ( ps  \/  ch ) ) )
31, 2bitri 184 1  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 713    \/ w3o 1001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714
This theorem depends on definitions:  df-bi 117  df-3or 1003
This theorem is referenced by:  3orrot  1008  3orcomb  1011  3mix1  1190  3bior1fd  1386  sotritric  4415  sotritrieq  4416  ordtriexmid  4613  ontriexmidim  4614  acexmidlemcase  6002  nntri3or  6647  nntri2  6648  exmidontriimlem1  7411  elnnz  9464  elznn0  9469  elznn  9470  zapne  9529  nn01to3  9820  elxr  9980  bezoutlemmain  12527  nninfctlemfo  12569  lgsdilem  15714  gausslemma2dlem4  15751
  Copyright terms: Public domain W3C validator