ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orass Unicode version

Theorem 3orass 976
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
3orass  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )

Proof of Theorem 3orass
StepHypRef Expression
1 df-3or 974 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/  ch ) )
2 orass 762 . 2  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ( ps  \/  ch ) ) )
31, 2bitri 183 1  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 703    \/ w3o 972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116  df-3or 974
This theorem is referenced by:  3orrot  979  3orcomb  982  3mix1  1161  sotritric  4309  sotritrieq  4310  ordtriexmid  4505  ontriexmidim  4506  acexmidlemcase  5848  nntri3or  6472  nntri2  6473  exmidontriimlem1  7198  elnnz  9222  elznn0  9227  elznn  9228  zapne  9286  nn01to3  9576  elxr  9733  bezoutlemmain  11953  lgsdilem  13722
  Copyright terms: Public domain W3C validator