ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orass Unicode version

Theorem 3orass 971
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
3orass  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )

Proof of Theorem 3orass
StepHypRef Expression
1 df-3or 969 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/  ch ) )
2 orass 757 . 2  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ( ps  \/  ch ) ) )
31, 2bitri 183 1  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 698    \/ w3o 967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-3or 969
This theorem is referenced by:  3orrot  974  3orcomb  977  3mix1  1156  sotritric  4302  sotritrieq  4303  ordtriexmid  4498  ontriexmidim  4499  acexmidlemcase  5837  nntri3or  6461  nntri2  6462  exmidontriimlem1  7177  elnnz  9201  elznn0  9206  elznn  9207  zapne  9265  nn01to3  9555  elxr  9712  bezoutlemmain  11931  lgsdilem  13568
  Copyright terms: Public domain W3C validator