ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq1i Unicode version

Theorem abeq1i 2319
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.)
Hypothesis
Ref Expression
abeqri.1  |-  { x  |  ph }  =  A
Assertion
Ref Expression
abeq1i  |-  ( ph  <->  x  e.  A )

Proof of Theorem abeq1i
StepHypRef Expression
1 abid 2195 . 2  |-  ( x  e.  { x  | 
ph }  <->  ph )
2 abeqri.1 . . 3  |-  { x  |  ph }  =  A
32eleq2i 2274 . 2  |-  ( x  e.  { x  | 
ph }  <->  x  e.  A )
41, 3bitr3i 186 1  |-  ( ph  <->  x  e.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator