ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq1i Unicode version

Theorem abeq1i 2278
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.)
Hypothesis
Ref Expression
abeqri.1  |-  { x  |  ph }  =  A
Assertion
Ref Expression
abeq1i  |-  ( ph  <->  x  e.  A )

Proof of Theorem abeq1i
StepHypRef Expression
1 abid 2153 . 2  |-  ( x  e.  { x  | 
ph }  <->  ph )
2 abeqri.1 . . 3  |-  { x  |  ph }  =  A
32eleq2i 2233 . 2  |-  ( x  e.  { x  | 
ph }  <->  x  e.  A )
41, 3bitr3i 185 1  |-  ( ph  <->  x  e.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343    e. wcel 2136   {cab 2151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator