Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abid | Unicode version |
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2144 | . 2 | |
2 | sbid 1754 | . 2 | |
3 | 1, 2 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wsb 1742 wcel 2128 cab 2143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-4 1490 ax-17 1506 ax-i9 1510 |
This theorem depends on definitions: df-bi 116 df-sb 1743 df-clab 2144 |
This theorem is referenced by: abeq2 2266 abeq2i 2268 abeq1i 2269 abeq2d 2270 abid2f 2325 elabgt 2853 elabgf 2854 ralab2 2876 rexab2 2878 sbccsbg 3060 sbccsb2g 3061 ss2ab 3196 abn0r 3418 abn0m 3419 tpid3g 3674 eluniab 3784 elintab 3818 iunab 3895 iinab 3910 intexabim 4113 iinexgm 4115 opm 4194 finds2 4559 dmmrnm 4804 sniota 5161 eusvobj2 5807 eloprabga 5905 indpi 7256 elabgf0 13322 |
Copyright terms: Public domain | W3C validator |