Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abid | Unicode version |
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2152 | . 2 | |
2 | sbid 1762 | . 2 | |
3 | 1, 2 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wsb 1750 wcel 2136 cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 |
This theorem is referenced by: abeq2 2275 abeq2i 2277 abeq1i 2278 abeq2d 2279 abid2f 2334 elabgt 2867 elabgf 2868 ralab2 2890 rexab2 2892 sbccsbg 3074 sbccsb2g 3075 ss2ab 3210 abn0r 3433 abn0m 3434 tpid3g 3691 eluniab 3801 elintab 3835 iunab 3912 iinab 3927 intexabim 4131 iinexgm 4133 opm 4212 finds2 4578 dmmrnm 4823 sniota 5180 eusvobj2 5828 eloprabga 5929 indpi 7283 elabgf0 13658 |
Copyright terms: Public domain | W3C validator |