| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abid | Unicode version | ||
| Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2194 |
. 2
| |
| 2 | sbid 1798 |
. 2
| |
| 3 | 1, 2 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 |
| This theorem is referenced by: abeq2 2316 abeq2i 2318 abeq1i 2319 abeq2d 2320 abid2f 2376 elabgt 2921 elabgf 2922 ralab2 2944 rexab2 2946 sbccsbg 3130 sbccsb2g 3131 ss2ab 3269 abn0r 3493 abn0m 3494 tpid3g 3758 eluniab 3876 elintab 3910 iunab 3988 iinab 4003 intexabim 4212 iinexgm 4214 opm 4296 finds2 4667 dmmrnm 4916 iotaexab 5269 sniota 5281 eusvobj2 5953 eloprabga 6055 indpi 7490 4sqlem12 12840 elabgf0 15913 |
| Copyright terms: Public domain | W3C validator |