| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abid | Unicode version | ||
| Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2192 |
. 2
| |
| 2 | sbid 1797 |
. 2
| |
| 3 | 1, 2 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 |
| This theorem is referenced by: abeq2 2314 abeq2i 2316 abeq1i 2317 abeq2d 2318 abid2f 2374 elabgt 2914 elabgf 2915 ralab2 2937 rexab2 2939 sbccsbg 3122 sbccsb2g 3123 ss2ab 3261 abn0r 3485 abn0m 3486 tpid3g 3748 eluniab 3862 elintab 3896 iunab 3974 iinab 3989 intexabim 4196 iinexgm 4198 opm 4278 finds2 4649 dmmrnm 4897 iotaexab 5250 sniota 5262 eusvobj2 5930 eloprabga 6032 indpi 7455 4sqlem12 12725 elabgf0 15713 |
| Copyright terms: Public domain | W3C validator |