| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > abid | Unicode version | ||
| Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| abid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-clab 2183 | 
. 2
 | |
| 2 | sbid 1788 | 
. 2
 | |
| 3 | 1, 2 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 | 
| This theorem is referenced by: abeq2 2305 abeq2i 2307 abeq1i 2308 abeq2d 2309 abid2f 2365 elabgt 2905 elabgf 2906 ralab2 2928 rexab2 2930 sbccsbg 3113 sbccsb2g 3114 ss2ab 3251 abn0r 3475 abn0m 3476 tpid3g 3737 eluniab 3851 elintab 3885 iunab 3963 iinab 3978 intexabim 4185 iinexgm 4187 opm 4267 finds2 4637 dmmrnm 4885 iotaexab 5237 sniota 5249 eusvobj2 5908 eloprabga 6009 indpi 7409 4sqlem12 12571 elabgf0 15423 | 
| Copyright terms: Public domain | W3C validator |