| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abid | Unicode version | ||
| Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2183 |
. 2
| |
| 2 | sbid 1788 |
. 2
| |
| 3 | 1, 2 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 |
| This theorem is referenced by: abeq2 2305 abeq2i 2307 abeq1i 2308 abeq2d 2309 abid2f 2365 elabgt 2905 elabgf 2906 ralab2 2928 rexab2 2930 sbccsbg 3113 sbccsb2g 3114 ss2ab 3252 abn0r 3476 abn0m 3477 tpid3g 3738 eluniab 3852 elintab 3886 iunab 3964 iinab 3979 intexabim 4186 iinexgm 4188 opm 4268 finds2 4638 dmmrnm 4886 iotaexab 5238 sniota 5250 eusvobj2 5911 eloprabga 6013 indpi 7426 4sqlem12 12596 elabgf0 15507 |
| Copyright terms: Public domain | W3C validator |