![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abid | Unicode version |
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2180 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sbid 1785 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 |
This theorem is referenced by: abeq2 2302 abeq2i 2304 abeq1i 2305 abeq2d 2306 abid2f 2362 elabgt 2901 elabgf 2902 ralab2 2924 rexab2 2926 sbccsbg 3109 sbccsb2g 3110 ss2ab 3247 abn0r 3471 abn0m 3472 tpid3g 3733 eluniab 3847 elintab 3881 iunab 3959 iinab 3974 intexabim 4181 iinexgm 4183 opm 4263 finds2 4633 dmmrnm 4881 iotaexab 5233 sniota 5245 eusvobj2 5904 eloprabga 6005 indpi 7402 4sqlem12 12540 elabgf0 15269 |
Copyright terms: Public domain | W3C validator |