| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq2i | Unicode version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
| Ref | Expression |
|---|---|
| abeqi.1 |
|
| Ref | Expression |
|---|---|
| abeq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqi.1 |
. . 3
| |
| 2 | 1 | eleq2i 2263 |
. 2
|
| 3 | abid 2184 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: rabid 2673 vex 2766 csbco 3094 csbcow 3095 csbnestgf 3137 ifmdc 3602 pwss 3622 snsspw 3795 iunpw 4516 ordon 4523 funcnv3 5321 tfrlem4 6380 tfrlem8 6385 tfrlem9 6386 tfrlemibxssdm 6394 tfr1onlembxssdm 6410 tfrcllembxssdm 6423 ixpm 6798 mapsnen 6879 sbthlem1 7032 1idprl 7674 1idpru 7675 recexprlem1ssl 7717 recexprlem1ssu 7718 recexprlemss1l 7719 recexprlemss1u 7720 txbas 14578 |
| Copyright terms: Public domain | W3C validator |