| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq2i | Unicode version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
| Ref | Expression |
|---|---|
| abeqi.1 |
|
| Ref | Expression |
|---|---|
| abeq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqi.1 |
. . 3
| |
| 2 | 1 | eleq2i 2296 |
. 2
|
| 3 | abid 2217 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: rabid 2707 vex 2802 csbco 3134 csbcow 3135 csbnestgf 3177 ifmdc 3645 pwss 3665 snsspw 3842 iunpw 4571 ordon 4578 funcnv3 5383 tfrlem4 6459 tfrlem8 6464 tfrlem9 6465 tfrlemibxssdm 6473 tfr1onlembxssdm 6489 tfrcllembxssdm 6502 ixpm 6877 mapsnen 6964 sbthlem1 7124 1idprl 7777 1idpru 7778 recexprlem1ssl 7820 recexprlem1ssu 7821 recexprlemss1l 7822 recexprlemss1u 7823 txbas 14932 |
| Copyright terms: Public domain | W3C validator |