Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abeq2i | Unicode version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
abeqi.1 |
Ref | Expression |
---|---|
abeq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqi.1 | . . 3 | |
2 | 1 | eleq2i 2221 | . 2 |
3 | abid 2142 | . 2 | |
4 | 2, 3 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1332 wcel 2125 cab 2140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 |
This theorem is referenced by: rabid 2629 vex 2712 csbco 3037 csbcow 3038 csbnestgf 3079 ifmdc 3538 pwss 3555 snsspw 3723 iunpw 4434 ordon 4439 funcnv3 5225 tfrlem4 6250 tfrlem8 6255 tfrlem9 6256 tfrlemibxssdm 6264 tfr1onlembxssdm 6280 tfrcllembxssdm 6293 ixpm 6664 mapsnen 6745 sbthlem1 6890 1idprl 7489 1idpru 7490 recexprlem1ssl 7532 recexprlem1ssu 7533 recexprlemss1l 7534 recexprlemss1u 7535 txbas 12597 |
Copyright terms: Public domain | W3C validator |