Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abeq2i | Unicode version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
abeqi.1 |
Ref | Expression |
---|---|
abeq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqi.1 | . . 3 | |
2 | 1 | eleq2i 2237 | . 2 |
3 | abid 2158 | . 2 | |
4 | 2, 3 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wcel 2141 cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: rabid 2645 vex 2733 csbco 3059 csbcow 3060 csbnestgf 3101 ifmdc 3565 pwss 3582 snsspw 3751 iunpw 4465 ordon 4470 funcnv3 5260 tfrlem4 6292 tfrlem8 6297 tfrlem9 6298 tfrlemibxssdm 6306 tfr1onlembxssdm 6322 tfrcllembxssdm 6335 ixpm 6708 mapsnen 6789 sbthlem1 6934 1idprl 7552 1idpru 7553 recexprlem1ssl 7595 recexprlem1ssu 7596 recexprlemss1l 7597 recexprlemss1u 7598 txbas 13052 |
Copyright terms: Public domain | W3C validator |