| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq2i | Unicode version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
| Ref | Expression |
|---|---|
| abeqi.1 |
|
| Ref | Expression |
|---|---|
| abeq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqi.1 |
. . 3
| |
| 2 | 1 | eleq2i 2274 |
. 2
|
| 3 | abid 2195 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: rabid 2684 vex 2779 csbco 3111 csbcow 3112 csbnestgf 3154 ifmdc 3622 pwss 3642 snsspw 3818 iunpw 4545 ordon 4552 funcnv3 5355 tfrlem4 6422 tfrlem8 6427 tfrlem9 6428 tfrlemibxssdm 6436 tfr1onlembxssdm 6452 tfrcllembxssdm 6465 ixpm 6840 mapsnen 6927 sbthlem1 7085 1idprl 7738 1idpru 7739 recexprlem1ssl 7781 recexprlem1ssu 7782 recexprlemss1l 7783 recexprlemss1u 7784 txbas 14845 |
| Copyright terms: Public domain | W3C validator |