ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq2i Unicode version

Theorem abeq2i 2304
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.)
Hypothesis
Ref Expression
abeqi.1  |-  A  =  { x  |  ph }
Assertion
Ref Expression
abeq2i  |-  ( x  e.  A  <->  ph )

Proof of Theorem abeq2i
StepHypRef Expression
1 abeqi.1 . . 3  |-  A  =  { x  |  ph }
21eleq2i 2260 . 2  |-  ( x  e.  A  <->  x  e.  { x  |  ph }
)
3 abid 2181 . 2  |-  ( x  e.  { x  | 
ph }  <->  ph )
42, 3bitri 184 1  |-  ( x  e.  A  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189
This theorem is referenced by:  rabid  2670  vex  2763  csbco  3090  csbcow  3091  csbnestgf  3133  ifmdc  3597  pwss  3617  snsspw  3790  iunpw  4511  ordon  4518  funcnv3  5316  tfrlem4  6366  tfrlem8  6371  tfrlem9  6372  tfrlemibxssdm  6380  tfr1onlembxssdm  6396  tfrcllembxssdm  6409  ixpm  6784  mapsnen  6865  sbthlem1  7016  1idprl  7650  1idpru  7651  recexprlem1ssl  7693  recexprlem1ssu  7694  recexprlemss1l  7695  recexprlemss1u  7696  txbas  14426
  Copyright terms: Public domain W3C validator