Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abeq2i | Unicode version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
abeqi.1 |
Ref | Expression |
---|---|
abeq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqi.1 | . . 3 | |
2 | 1 | eleq2i 2242 | . 2 |
3 | abid 2163 | . 2 | |
4 | 2, 3 | bitri 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wceq 1353 wcel 2146 cab 2161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 |
This theorem is referenced by: rabid 2650 vex 2738 csbco 3065 csbcow 3066 csbnestgf 3107 ifmdc 3571 pwss 3588 snsspw 3760 iunpw 4474 ordon 4479 funcnv3 5270 tfrlem4 6304 tfrlem8 6309 tfrlem9 6310 tfrlemibxssdm 6318 tfr1onlembxssdm 6334 tfrcllembxssdm 6347 ixpm 6720 mapsnen 6801 sbthlem1 6946 1idprl 7564 1idpru 7565 recexprlem1ssl 7607 recexprlem1ssu 7608 recexprlemss1l 7609 recexprlemss1u 7610 txbas 13338 |
Copyright terms: Public domain | W3C validator |