| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq2i | Unicode version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
| Ref | Expression |
|---|---|
| abeqi.1 |
|
| Ref | Expression |
|---|---|
| abeq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqi.1 |
. . 3
| |
| 2 | 1 | eleq2i 2272 |
. 2
|
| 3 | abid 2193 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: rabid 2682 vex 2775 csbco 3103 csbcow 3104 csbnestgf 3146 ifmdc 3612 pwss 3632 snsspw 3805 iunpw 4528 ordon 4535 funcnv3 5337 tfrlem4 6401 tfrlem8 6406 tfrlem9 6407 tfrlemibxssdm 6415 tfr1onlembxssdm 6431 tfrcllembxssdm 6444 ixpm 6819 mapsnen 6905 sbthlem1 7061 1idprl 7705 1idpru 7706 recexprlem1ssl 7748 recexprlem1ssu 7749 recexprlemss1l 7750 recexprlemss1u 7751 txbas 14763 |
| Copyright terms: Public domain | W3C validator |