| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq2i | Unicode version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
| Ref | Expression |
|---|---|
| abeqi.1 |
|
| Ref | Expression |
|---|---|
| abeq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqi.1 |
. . 3
| |
| 2 | 1 | eleq2i 2272 |
. 2
|
| 3 | abid 2193 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: rabid 2682 vex 2775 csbco 3103 csbcow 3104 csbnestgf 3146 ifmdc 3612 pwss 3632 snsspw 3805 iunpw 4527 ordon 4534 funcnv3 5336 tfrlem4 6399 tfrlem8 6404 tfrlem9 6405 tfrlemibxssdm 6413 tfr1onlembxssdm 6429 tfrcllembxssdm 6442 ixpm 6817 mapsnen 6903 sbthlem1 7059 1idprl 7703 1idpru 7704 recexprlem1ssl 7746 recexprlem1ssu 7747 recexprlemss1l 7748 recexprlemss1u 7749 txbas 14730 |
| Copyright terms: Public domain | W3C validator |