ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq1i GIF version

Theorem abeq1i 2278
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.)
Hypothesis
Ref Expression
abeqri.1 {𝑥𝜑} = 𝐴
Assertion
Ref Expression
abeq1i (𝜑𝑥𝐴)

Proof of Theorem abeq1i
StepHypRef Expression
1 abid 2153 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
2 abeqri.1 . . 3 {𝑥𝜑} = 𝐴
32eleq2i 2233 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝑥𝐴)
41, 3bitr3i 185 1 (𝜑𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343  wcel 2136  {cab 2151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator