| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq1i | GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.) |
| Ref | Expression |
|---|---|
| abeqri.1 | ⊢ {𝑥 ∣ 𝜑} = 𝐴 |
| Ref | Expression |
|---|---|
| abeq1i | ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid 2217 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 2 | abeqri.1 | . . 3 ⊢ {𝑥 ∣ 𝜑} = 𝐴 | |
| 3 | 2 | eleq2i 2296 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ 𝐴) |
| 4 | 1, 3 | bitr3i 186 | 1 ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |