ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq1i GIF version

Theorem abeq1i 2318
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.)
Hypothesis
Ref Expression
abeqri.1 {𝑥𝜑} = 𝐴
Assertion
Ref Expression
abeq1i (𝜑𝑥𝐴)

Proof of Theorem abeq1i
StepHypRef Expression
1 abid 2194 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
2 abeqri.1 . . 3 {𝑥𝜑} = 𝐴
32eleq2i 2273 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝑥𝐴)
41, 3bitr3i 186 1 (𝜑𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2177  {cab 2192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator