ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq1i GIF version

Theorem abeq1i 2316
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.)
Hypothesis
Ref Expression
abeqri.1 {𝑥𝜑} = 𝐴
Assertion
Ref Expression
abeq1i (𝜑𝑥𝐴)

Proof of Theorem abeq1i
StepHypRef Expression
1 abid 2192 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
2 abeqri.1 . . 3 {𝑥𝜑} = 𝐴
32eleq2i 2271 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝑥𝐴)
41, 3bitr3i 186 1 (𝜑𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1372  wcel 2175  {cab 2190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator