Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abeq2d | Unicode version |
Description: Equality of a class variable and a class abstraction (deduction). (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
abeqd.1 |
Ref | Expression |
---|---|
abeq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqd.1 | . . 3 | |
2 | 1 | eleq2d 2236 | . 2 |
3 | abid 2153 | . 2 | |
4 | 2, 3 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: fvelimab 5542 frecsuclem 6374 |
Copyright terms: Public domain | W3C validator |