ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq2d Unicode version

Theorem abeq2d 2279
Description: Equality of a class variable and a class abstraction (deduction). (Contributed by NM, 16-Nov-1995.)
Hypothesis
Ref Expression
abeqd.1  |-  ( ph  ->  A  =  { x  |  ps } )
Assertion
Ref Expression
abeq2d  |-  ( ph  ->  ( x  e.  A  <->  ps ) )

Proof of Theorem abeq2d
StepHypRef Expression
1 abeqd.1 . . 3  |-  ( ph  ->  A  =  { x  |  ps } )
21eleq2d 2236 . 2  |-  ( ph  ->  ( x  e.  A  <->  x  e.  { x  |  ps } ) )
3 abid 2153 . 2  |-  ( x  e.  { x  |  ps }  <->  ps )
42, 3bitrdi 195 1  |-  ( ph  ->  ( x  e.  A  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   {cab 2151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161
This theorem is referenced by:  fvelimab  5542  frecsuclem  6374
  Copyright terms: Public domain W3C validator