Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abeq2d | Unicode version |
Description: Equality of a class variable and a class abstraction (deduction). (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
abeqd.1 |
Ref | Expression |
---|---|
abeq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqd.1 | . . 3 | |
2 | 1 | eleq2d 2240 | . 2 |
3 | abid 2158 | . 2 | |
4 | 2, 3 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wcel 2141 cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: fvelimab 5550 frecsuclem 6382 |
Copyright terms: Public domain | W3C validator |