Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  albid GIF version

Theorem albid 1594
 Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
albid.1 𝑥𝜑
albid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
albid (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))

Proof of Theorem albid
StepHypRef Expression
1 albid.1 . . 3 𝑥𝜑
21nfri 1499 . 2 (𝜑 → ∀𝑥𝜑)
3 albid.2 . 2 (𝜑 → (𝜓𝜒))
42, 3albidh 1456 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104  ∀wal 1329  Ⅎwnf 1436 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-4 1487 This theorem depends on definitions:  df-bi 116  df-nf 1437 This theorem is referenced by:  alexdc  1598  19.32dc  1657  eubid  2006  ralbida  2431  raleqf  2622  intab  3800  bdsepnft  13115  strcollnft  13212  sscoll2  13216
 Copyright terms: Public domain W3C validator