| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsepnft | Unicode version | ||
| Description: Closed form of bdsepnf 15828. Version of ax-bdsep 15824 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness antecedent, and without initial universal quantifier. Use bdsep1 15825 when sufficient. (Contributed by BJ, 19-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdsepnft.1 |
|
| Ref | Expression |
|---|---|
| bdsepnft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdsepnft.1 |
. . 3
| |
| 2 | 1 | bdsep2 15826 |
. 2
|
| 3 | nfnf1 1567 |
. . . 4
| |
| 4 | 3 | nfal 1599 |
. . 3
|
| 5 | nfa1 1564 |
. . . 4
| |
| 6 | nfvd 1552 |
. . . . 5
| |
| 7 | nfv 1551 |
. . . . . . 7
| |
| 8 | 7 | a1i 9 |
. . . . . 6
|
| 9 | sp 1534 |
. . . . . 6
| |
| 10 | 8, 9 | nfand 1591 |
. . . . 5
|
| 11 | 6, 10 | nfbid 1611 |
. . . 4
|
| 12 | 5, 11 | nfald 1783 |
. . 3
|
| 13 | nfv 1551 |
. . . . . 6
| |
| 14 | 5, 13 | nfan 1588 |
. . . . 5
|
| 15 | elequ2 2181 |
. . . . . . 7
| |
| 16 | 15 | adantl 277 |
. . . . . 6
|
| 17 | 16 | bibi1d 233 |
. . . . 5
|
| 18 | 14, 17 | albid 1638 |
. . . 4
|
| 19 | 18 | ex 115 |
. . 3
|
| 20 | 4, 12, 19 | cbvexd 1951 |
. 2
|
| 21 | 2, 20 | mpbii 148 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-bdsep 15824 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: bdsepnf 15828 |
| Copyright terms: Public domain | W3C validator |