| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsepnft | Unicode version | ||
| Description: Closed form of bdsepnf 15618. Version of ax-bdsep 15614 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness antecedent, and without initial universal quantifier. Use bdsep1 15615 when sufficient. (Contributed by BJ, 19-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdsepnft.1 |
|
| Ref | Expression |
|---|---|
| bdsepnft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdsepnft.1 |
. . 3
| |
| 2 | 1 | bdsep2 15616 |
. 2
|
| 3 | nfnf1 1558 |
. . . 4
| |
| 4 | 3 | nfal 1590 |
. . 3
|
| 5 | nfa1 1555 |
. . . 4
| |
| 6 | nfvd 1543 |
. . . . 5
| |
| 7 | nfv 1542 |
. . . . . . 7
| |
| 8 | 7 | a1i 9 |
. . . . . 6
|
| 9 | sp 1525 |
. . . . . 6
| |
| 10 | 8, 9 | nfand 1582 |
. . . . 5
|
| 11 | 6, 10 | nfbid 1602 |
. . . 4
|
| 12 | 5, 11 | nfald 1774 |
. . 3
|
| 13 | nfv 1542 |
. . . . . 6
| |
| 14 | 5, 13 | nfan 1579 |
. . . . 5
|
| 15 | elequ2 2172 |
. . . . . . 7
| |
| 16 | 15 | adantl 277 |
. . . . . 6
|
| 17 | 16 | bibi1d 233 |
. . . . 5
|
| 18 | 14, 17 | albid 1629 |
. . . 4
|
| 19 | 18 | ex 115 |
. . 3
|
| 20 | 4, 12, 19 | cbvexd 1942 |
. 2
|
| 21 | 2, 20 | mpbii 148 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-bdsep 15614 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: bdsepnf 15618 |
| Copyright terms: Public domain | W3C validator |