Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsepnft Unicode version

Theorem bdsepnft 13769
Description: Closed form of bdsepnf 13770. Version of ax-bdsep 13766 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness antecedent, and without initial universal quantifier. Use bdsep1 13767 when sufficient. (Contributed by BJ, 19-Oct-2019.)
Hypothesis
Ref Expression
bdsepnft.1  |- BOUNDED  ph
Assertion
Ref Expression
bdsepnft  |-  ( A. x F/ b ph  ->  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
) )
Distinct variable group:    a, b, x
Allowed substitution hints:    ph( x, a, b)

Proof of Theorem bdsepnft
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdsepnft.1 . . 3  |- BOUNDED  ph
21bdsep2 13768 . 2  |-  E. y A. x ( x  e.  y  <->  ( x  e.  a  /\  ph )
)
3 nfnf1 1532 . . . 4  |-  F/ b F/ b ph
43nfal 1564 . . 3  |-  F/ b A. x F/ b
ph
5 nfa1 1529 . . . 4  |-  F/ x A. x F/ b ph
6 nfvd 1517 . . . . 5  |-  ( A. x F/ b ph  ->  F/ b  x  e.  y )
7 nfv 1516 . . . . . . 7  |-  F/ b  x  e.  a
87a1i 9 . . . . . 6  |-  ( A. x F/ b ph  ->  F/ b  x  e.  a )
9 sp 1499 . . . . . 6  |-  ( A. x F/ b ph  ->  F/ b ph )
108, 9nfand 1556 . . . . 5  |-  ( A. x F/ b ph  ->  F/ b ( x  e.  a  /\  ph )
)
116, 10nfbid 1576 . . . 4  |-  ( A. x F/ b ph  ->  F/ b ( x  e.  y  <->  ( x  e.  a  /\  ph )
) )
125, 11nfald 1748 . . 3  |-  ( A. x F/ b ph  ->  F/ b A. x ( x  e.  y  <->  ( x  e.  a  /\  ph )
) )
13 nfv 1516 . . . . . 6  |-  F/ x  y  =  b
145, 13nfan 1553 . . . . 5  |-  F/ x
( A. x F/ b ph  /\  y  =  b )
15 elequ2 2141 . . . . . . 7  |-  ( y  =  b  ->  (
x  e.  y  <->  x  e.  b ) )
1615adantl 275 . . . . . 6  |-  ( ( A. x F/ b
ph  /\  y  =  b )  ->  (
x  e.  y  <->  x  e.  b ) )
1716bibi1d 232 . . . . 5  |-  ( ( A. x F/ b
ph  /\  y  =  b )  ->  (
( x  e.  y  <-> 
( x  e.  a  /\  ph ) )  <-> 
( x  e.  b  <-> 
( x  e.  a  /\  ph ) ) ) )
1814, 17albid 1603 . . . 4  |-  ( ( A. x F/ b
ph  /\  y  =  b )  ->  ( A. x ( x  e.  y  <->  ( x  e.  a  /\  ph )
)  <->  A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
) ) )
1918ex 114 . . 3  |-  ( A. x F/ b ph  ->  ( y  =  b  -> 
( A. x ( x  e.  y  <->  ( x  e.  a  /\  ph )
)  <->  A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
) ) ) )
204, 12, 19cbvexd 1915 . 2  |-  ( A. x F/ b ph  ->  ( E. y A. x
( x  e.  y  <-> 
( x  e.  a  /\  ph ) )  <->  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
) ) )
212, 20mpbii 147 1  |-  ( A. x F/ b ph  ->  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341   F/wnf 1448   E.wex 1480  BOUNDED wbd 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-clel 2161
This theorem is referenced by:  bdsepnf  13770
  Copyright terms: Public domain W3C validator