| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intab | Unicode version | ||
| Description: The intersection of a
special case of a class abstraction. |
| Ref | Expression |
|---|---|
| intab.1 |
|
| intab.2 |
|
| Ref | Expression |
|---|---|
| intab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2236 |
. . . . . . . . . 10
| |
| 2 | 1 | anbi2d 464 |
. . . . . . . . 9
|
| 3 | 2 | exbidv 1871 |
. . . . . . . 8
|
| 4 | 3 | cbvabv 2354 |
. . . . . . 7
|
| 5 | intab.2 |
. . . . . . 7
| |
| 6 | 4, 5 | eqeltri 2302 |
. . . . . 6
|
| 7 | nfe1 1542 |
. . . . . . . . 9
| |
| 8 | 7 | nfab 2377 |
. . . . . . . 8
|
| 9 | 8 | nfeq2 2384 |
. . . . . . 7
|
| 10 | eleq2 2293 |
. . . . . . . 8
| |
| 11 | 10 | imbi2d 230 |
. . . . . . 7
|
| 12 | 9, 11 | albid 1661 |
. . . . . 6
|
| 13 | 6, 12 | elab 2947 |
. . . . 5
|
| 14 | 19.8a 1636 |
. . . . . . . . 9
| |
| 15 | 14 | ex 115 |
. . . . . . . 8
|
| 16 | 15 | alrimiv 1920 |
. . . . . . 7
|
| 17 | intab.1 |
. . . . . . . 8
| |
| 18 | 17 | sbc6 3054 |
. . . . . . 7
|
| 19 | 16, 18 | sylibr 134 |
. . . . . 6
|
| 20 | df-sbc 3029 |
. . . . . 6
| |
| 21 | 19, 20 | sylib 122 |
. . . . 5
|
| 22 | 13, 21 | mpgbir 1499 |
. . . 4
|
| 23 | intss1 3937 |
. . . 4
| |
| 24 | 22, 23 | ax-mp 5 |
. . 3
|
| 25 | 19.29r 1667 |
. . . . . . . 8
| |
| 26 | simplr 528 |
. . . . . . . . . 10
| |
| 27 | pm3.35 347 |
. . . . . . . . . . 11
| |
| 28 | 27 | adantlr 477 |
. . . . . . . . . 10
|
| 29 | 26, 28 | eqeltrd 2306 |
. . . . . . . . 9
|
| 30 | 29 | exlimiv 1644 |
. . . . . . . 8
|
| 31 | 25, 30 | syl 14 |
. . . . . . 7
|
| 32 | 31 | ex 115 |
. . . . . 6
|
| 33 | 32 | alrimiv 1920 |
. . . . 5
|
| 34 | vex 2802 |
. . . . . 6
| |
| 35 | 34 | elintab 3933 |
. . . . 5
|
| 36 | 33, 35 | sylibr 134 |
. . . 4
|
| 37 | 36 | abssi 3299 |
. . 3
|
| 38 | 24, 37 | eqssi 3240 |
. 2
|
| 39 | 38, 4 | eqtri 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 df-in 3203 df-ss 3210 df-int 3923 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |