| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > intab | Unicode version | ||
| Description: The intersection of a
special case of a class abstraction.  | 
| Ref | Expression | 
|---|---|
| intab.1 | 
 | 
| intab.2 | 
 | 
| Ref | Expression | 
|---|---|
| intab | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq1 2203 | 
. . . . . . . . . 10
 | |
| 2 | 1 | anbi2d 464 | 
. . . . . . . . 9
 | 
| 3 | 2 | exbidv 1839 | 
. . . . . . . 8
 | 
| 4 | 3 | cbvabv 2321 | 
. . . . . . 7
 | 
| 5 | intab.2 | 
. . . . . . 7
 | |
| 6 | 4, 5 | eqeltri 2269 | 
. . . . . 6
 | 
| 7 | nfe1 1510 | 
. . . . . . . . 9
 | |
| 8 | 7 | nfab 2344 | 
. . . . . . . 8
 | 
| 9 | 8 | nfeq2 2351 | 
. . . . . . 7
 | 
| 10 | eleq2 2260 | 
. . . . . . . 8
 | |
| 11 | 10 | imbi2d 230 | 
. . . . . . 7
 | 
| 12 | 9, 11 | albid 1629 | 
. . . . . 6
 | 
| 13 | 6, 12 | elab 2908 | 
. . . . 5
 | 
| 14 | 19.8a 1604 | 
. . . . . . . . 9
 | |
| 15 | 14 | ex 115 | 
. . . . . . . 8
 | 
| 16 | 15 | alrimiv 1888 | 
. . . . . . 7
 | 
| 17 | intab.1 | 
. . . . . . . 8
 | |
| 18 | 17 | sbc6 3015 | 
. . . . . . 7
 | 
| 19 | 16, 18 | sylibr 134 | 
. . . . . 6
 | 
| 20 | df-sbc 2990 | 
. . . . . 6
 | |
| 21 | 19, 20 | sylib 122 | 
. . . . 5
 | 
| 22 | 13, 21 | mpgbir 1467 | 
. . . 4
 | 
| 23 | intss1 3889 | 
. . . 4
 | |
| 24 | 22, 23 | ax-mp 5 | 
. . 3
 | 
| 25 | 19.29r 1635 | 
. . . . . . . 8
 | |
| 26 | simplr 528 | 
. . . . . . . . . 10
 | |
| 27 | pm3.35 347 | 
. . . . . . . . . . 11
 | |
| 28 | 27 | adantlr 477 | 
. . . . . . . . . 10
 | 
| 29 | 26, 28 | eqeltrd 2273 | 
. . . . . . . . 9
 | 
| 30 | 29 | exlimiv 1612 | 
. . . . . . . 8
 | 
| 31 | 25, 30 | syl 14 | 
. . . . . . 7
 | 
| 32 | 31 | ex 115 | 
. . . . . 6
 | 
| 33 | 32 | alrimiv 1888 | 
. . . . 5
 | 
| 34 | vex 2766 | 
. . . . . 6
 | |
| 35 | 34 | elintab 3885 | 
. . . . 5
 | 
| 36 | 33, 35 | sylibr 134 | 
. . . 4
 | 
| 37 | 36 | abssi 3258 | 
. . 3
 | 
| 38 | 24, 37 | eqssi 3199 | 
. 2
 | 
| 39 | 38, 4 | eqtri 2217 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-in 3163 df-ss 3170 df-int 3875 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |