Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intab | Unicode version |
Description: The intersection of a special case of a class abstraction. may be free in and , which can be thought of a and . (Contributed by NM, 28-Jul-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
intab.1 | |
intab.2 |
Ref | Expression |
---|---|
intab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . . . . . . . . 10 | |
2 | 1 | anbi2d 460 | . . . . . . . . 9 |
3 | 2 | exbidv 1813 | . . . . . . . 8 |
4 | 3 | cbvabv 2291 | . . . . . . 7 |
5 | intab.2 | . . . . . . 7 | |
6 | 4, 5 | eqeltri 2239 | . . . . . 6 |
7 | nfe1 1484 | . . . . . . . . 9 | |
8 | 7 | nfab 2313 | . . . . . . . 8 |
9 | 8 | nfeq2 2320 | . . . . . . 7 |
10 | eleq2 2230 | . . . . . . . 8 | |
11 | 10 | imbi2d 229 | . . . . . . 7 |
12 | 9, 11 | albid 1603 | . . . . . 6 |
13 | 6, 12 | elab 2870 | . . . . 5 |
14 | 19.8a 1578 | . . . . . . . . 9 | |
15 | 14 | ex 114 | . . . . . . . 8 |
16 | 15 | alrimiv 1862 | . . . . . . 7 |
17 | intab.1 | . . . . . . . 8 | |
18 | 17 | sbc6 2976 | . . . . . . 7 |
19 | 16, 18 | sylibr 133 | . . . . . 6 |
20 | df-sbc 2952 | . . . . . 6 | |
21 | 19, 20 | sylib 121 | . . . . 5 |
22 | 13, 21 | mpgbir 1441 | . . . 4 |
23 | intss1 3839 | . . . 4 | |
24 | 22, 23 | ax-mp 5 | . . 3 |
25 | 19.29r 1609 | . . . . . . . 8 | |
26 | simplr 520 | . . . . . . . . . 10 | |
27 | pm3.35 345 | . . . . . . . . . . 11 | |
28 | 27 | adantlr 469 | . . . . . . . . . 10 |
29 | 26, 28 | eqeltrd 2243 | . . . . . . . . 9 |
30 | 29 | exlimiv 1586 | . . . . . . . 8 |
31 | 25, 30 | syl 14 | . . . . . . 7 |
32 | 31 | ex 114 | . . . . . 6 |
33 | 32 | alrimiv 1862 | . . . . 5 |
34 | vex 2729 | . . . . . 6 | |
35 | 34 | elintab 3835 | . . . . 5 |
36 | 33, 35 | sylibr 133 | . . . 4 |
37 | 36 | abssi 3217 | . . 3 |
38 | 24, 37 | eqssi 3158 | . 2 |
39 | 38, 4 | eqtri 2186 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wex 1480 wcel 2136 cab 2151 cvv 2726 wsbc 2951 wss 3116 cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-in 3122 df-ss 3129 df-int 3825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |