Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eubid | Unicode version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) |
Ref | Expression |
---|---|
eubid.1 | |
eubid.2 |
Ref | Expression |
---|---|
eubid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubid.1 | . . . 4 | |
2 | eubid.2 | . . . . 5 | |
3 | 2 | bibi1d 232 | . . . 4 |
4 | 1, 3 | albid 1608 | . . 3 |
5 | 4 | exbidv 1818 | . 2 |
6 | df-eu 2022 | . 2 | |
7 | df-eu 2022 | . 2 | |
8 | 5, 6, 7 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wnf 1453 wex 1485 weu 2019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-eu 2022 |
This theorem is referenced by: eubidv 2027 mobid 2054 reubida 2651 reueq1f 2663 eusv2i 4440 |
Copyright terms: Public domain | W3C validator |