ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubid Unicode version

Theorem eubid 2033
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.)
Hypotheses
Ref Expression
eubid.1  |-  F/ x ph
eubid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
eubid  |-  ( ph  ->  ( E! x ps  <->  E! x ch ) )

Proof of Theorem eubid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eubid.1 . . . 4  |-  F/ x ph
2 eubid.2 . . . . 5  |-  ( ph  ->  ( ps  <->  ch )
)
32bibi1d 233 . . . 4  |-  ( ph  ->  ( ( ps  <->  x  =  y )  <->  ( ch  <->  x  =  y ) ) )
41, 3albid 1615 . . 3  |-  ( ph  ->  ( A. x ( ps  <->  x  =  y
)  <->  A. x ( ch  <->  x  =  y ) ) )
54exbidv 1825 . 2  |-  ( ph  ->  ( E. y A. x ( ps  <->  x  =  y )  <->  E. y A. x ( ch  <->  x  =  y ) ) )
6 df-eu 2029 . 2  |-  ( E! x ps  <->  E. y A. x ( ps  <->  x  =  y ) )
7 df-eu 2029 . 2  |-  ( E! x ch  <->  E. y A. x ( ch  <->  x  =  y ) )
85, 6, 73bitr4g 223 1  |-  ( ph  ->  ( E! x ps  <->  E! x ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351   F/wnf 1460   E.wex 1492   E!weu 2026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-eu 2029
This theorem is referenced by:  eubidv  2034  mobid  2061  reubida  2658  reueq1f  2670  eusv2i  4455
  Copyright terms: Public domain W3C validator