ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.29 Unicode version

Theorem 19.29 1618
Description: Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
19.29  |-  ( ( A. x ph  /\  E. x ps )  ->  E. x ( ph  /\  ps ) )

Proof of Theorem 19.29
StepHypRef Expression
1 pm3.2 139 . . . 4  |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
21alimi 1453 . . 3  |-  ( A. x ph  ->  A. x
( ps  ->  ( ph  /\  ps ) ) )
3 exim 1597 . . 3  |-  ( A. x ( ps  ->  (
ph  /\  ps )
)  ->  ( E. x ps  ->  E. x
( ph  /\  ps )
) )
42, 3syl 14 . 2  |-  ( A. x ph  ->  ( E. x ps  ->  E. x
( ph  /\  ps )
) )
54imp 124 1  |-  ( ( A. x ph  /\  E. x ps )  ->  E. x ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351   E.wex 1490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-4 1508  ax-ial 1532
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.29r  1619  19.29x  1621  19.35-1  1622  equs4  1723  equvini  1756  rexxfrd  4457  funimaexglem  5291  bj-inex  14199
  Copyright terms: Public domain W3C validator