ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.29 Unicode version

Theorem 19.29 1608
Description: Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
19.29  |-  ( ( A. x ph  /\  E. x ps )  ->  E. x ( ph  /\  ps ) )

Proof of Theorem 19.29
StepHypRef Expression
1 pm3.2 138 . . . 4  |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
21alimi 1443 . . 3  |-  ( A. x ph  ->  A. x
( ps  ->  ( ph  /\  ps ) ) )
3 exim 1587 . . 3  |-  ( A. x ( ps  ->  (
ph  /\  ps )
)  ->  ( E. x ps  ->  E. x
( ph  /\  ps )
) )
42, 3syl 14 . 2  |-  ( A. x ph  ->  ( E. x ps  ->  E. x
( ph  /\  ps )
) )
54imp 123 1  |-  ( ( A. x ph  /\  E. x ps )  ->  E. x ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.29r  1609  19.29x  1611  19.35-1  1612  equs4  1713  equvini  1746  rexxfrd  4441  funimaexglem  5271  bj-inex  13799
  Copyright terms: Public domain W3C validator