ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexdc GIF version

Theorem alexdc 1630
Description: Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1656. (Contributed by Jim Kingdon, 2-Jun-2018.)
Assertion
Ref Expression
alexdc (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑))

Proof of Theorem alexdc
StepHypRef Expression
1 nfa1 1552 . . 3 𝑥𝑥DECID 𝜑
2 notnotbdc 873 . . . 4 (DECID 𝜑 → (𝜑 ↔ ¬ ¬ 𝜑))
32sps 1548 . . 3 (∀𝑥DECID 𝜑 → (𝜑 ↔ ¬ ¬ 𝜑))
41, 3albid 1626 . 2 (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ∀𝑥 ¬ ¬ 𝜑))
5 alnex 1510 . 2 (∀𝑥 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
64, 5bitrdi 196 1 (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  DECID wdc 835  wal 1362  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-gen 1460  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-fal 1370  df-nf 1472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator