![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alexdc | GIF version |
Description: Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1605. (Contributed by Jim Kingdon, 2-Jun-2018.) |
Ref | Expression |
---|---|
alexdc | ⊢ (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1502 | . . 3 ⊢ Ⅎ𝑥∀𝑥DECID 𝜑 | |
2 | notnotbdc 838 | . . . 4 ⊢ (DECID 𝜑 → (𝜑 ↔ ¬ ¬ 𝜑)) | |
3 | 2 | sps 1498 | . . 3 ⊢ (∀𝑥DECID 𝜑 → (𝜑 ↔ ¬ ¬ 𝜑)) |
4 | 1, 3 | albid 1575 | . 2 ⊢ (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ∀𝑥 ¬ ¬ 𝜑)) |
5 | alnex 1456 | . 2 ⊢ (∀𝑥 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
6 | 4, 5 | syl6bb 195 | 1 ⊢ (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 DECID wdc 802 ∀wal 1310 ∃wex 1449 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-gen 1406 ax-ie2 1451 ax-4 1468 ax-ial 1495 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-tru 1315 df-fal 1318 df-nf 1418 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |