ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexdc GIF version

Theorem alexdc 1607
Description: Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1633. (Contributed by Jim Kingdon, 2-Jun-2018.)
Assertion
Ref Expression
alexdc (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑))

Proof of Theorem alexdc
StepHypRef Expression
1 nfa1 1529 . . 3 𝑥𝑥DECID 𝜑
2 notnotbdc 862 . . . 4 (DECID 𝜑 → (𝜑 ↔ ¬ ¬ 𝜑))
32sps 1525 . . 3 (∀𝑥DECID 𝜑 → (𝜑 ↔ ¬ ¬ 𝜑))
41, 3albid 1603 . 2 (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ∀𝑥 ¬ ¬ 𝜑))
5 alnex 1487 . 2 (∀𝑥 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
64, 5bitrdi 195 1 (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  DECID wdc 824  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-gen 1437  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349  df-nf 1449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator