ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexdc GIF version

Theorem alexdc 1551
Description: Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1577. (Contributed by Jim Kingdon, 2-Jun-2018.)
Assertion
Ref Expression
alexdc (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑))

Proof of Theorem alexdc
StepHypRef Expression
1 nfa1 1475 . . 3 𝑥𝑥DECID 𝜑
2 notnotbdc 800 . . . 4 (DECID 𝜑 → (𝜑 ↔ ¬ ¬ 𝜑))
32sps 1471 . . 3 (∀𝑥DECID 𝜑 → (𝜑 ↔ ¬ ¬ 𝜑))
41, 3albid 1547 . 2 (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ∀𝑥 ¬ ¬ 𝜑))
5 alnex 1429 . 2 (∀𝑥 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
64, 5syl6bb 194 1 (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 103  DECID wdc 776  wal 1283  wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-gen 1379  ax-ie2 1424  ax-4 1441  ax-ial 1468
This theorem depends on definitions:  df-bi 115  df-dc 777  df-tru 1288  df-fal 1291  df-nf 1391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator