Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alexnim | GIF version |
Description: A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.) |
Ref | Expression |
---|---|
alexnim | ⊢ (∀𝑥∃𝑦 ¬ 𝜑 → ¬ ∃𝑥∀𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnalim 1634 | . . 3 ⊢ (∃𝑦 ¬ 𝜑 → ¬ ∀𝑦𝜑) | |
2 | 1 | alimi 1443 | . 2 ⊢ (∀𝑥∃𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦𝜑) |
3 | alnex 1487 | . 2 ⊢ (∀𝑥 ¬ ∀𝑦𝜑 ↔ ¬ ∃𝑥∀𝑦𝜑) | |
4 | 2, 3 | sylib 121 | 1 ⊢ (∀𝑥∃𝑦 ¬ 𝜑 → ¬ ∃𝑥∀𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 |
This theorem is referenced by: nalset 4112 bj-nalset 13777 |
Copyright terms: Public domain | W3C validator |