| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alexnim | GIF version | ||
| Description: A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| Ref | Expression |
|---|---|
| alexnim | ⊢ (∀𝑥∃𝑦 ¬ 𝜑 → ¬ ∃𝑥∀𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exnalim 1670 | . . 3 ⊢ (∃𝑦 ¬ 𝜑 → ¬ ∀𝑦𝜑) | |
| 2 | 1 | alimi 1479 | . 2 ⊢ (∀𝑥∃𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦𝜑) |
| 3 | alnex 1523 | . 2 ⊢ (∀𝑥 ¬ ∀𝑦𝜑 ↔ ¬ ∃𝑥∀𝑦𝜑) | |
| 4 | 2, 3 | sylib 122 | 1 ⊢ (∀𝑥∃𝑦 ¬ 𝜑 → ¬ ∃𝑥∀𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1371 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 |
| This theorem is referenced by: nalset 4190 bj-nalset 16030 |
| Copyright terms: Public domain | W3C validator |