ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexnim GIF version

Theorem alexnim 1627
Description: A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
alexnim (∀𝑥𝑦 ¬ 𝜑 → ¬ ∃𝑥𝑦𝜑)

Proof of Theorem alexnim
StepHypRef Expression
1 exnalim 1625 . . 3 (∃𝑦 ¬ 𝜑 → ¬ ∀𝑦𝜑)
21alimi 1431 . 2 (∀𝑥𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦𝜑)
3 alnex 1475 . 2 (∀𝑥 ¬ ∀𝑦𝜑 ↔ ¬ ∃𝑥𝑦𝜑)
42, 3sylib 121 1 (∀𝑥𝑦 ¬ 𝜑 → ¬ ∃𝑥𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1329  wex 1468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-4 1487  ax-17 1506  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-fal 1337  df-nf 1437
This theorem is referenced by:  nalset  4058  bj-nalset  13146
  Copyright terms: Public domain W3C validator