![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alexnim | GIF version |
Description: A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.) |
Ref | Expression |
---|---|
alexnim | ⊢ (∀𝑥∃𝑦 ¬ 𝜑 → ¬ ∃𝑥∀𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnalim 1583 | . . 3 ⊢ (∃𝑦 ¬ 𝜑 → ¬ ∀𝑦𝜑) | |
2 | 1 | alimi 1390 | . 2 ⊢ (∀𝑥∃𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦𝜑) |
3 | alnex 1434 | . 2 ⊢ (∀𝑥 ¬ ∀𝑦𝜑 ↔ ¬ ∃𝑥∀𝑦𝜑) | |
4 | 2, 3 | sylib 121 | 1 ⊢ (∀𝑥∃𝑦 ¬ 𝜑 → ¬ ∃𝑥∀𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1288 ∃wex 1427 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-5 1382 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-4 1446 ax-17 1465 ax-ial 1473 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-fal 1296 df-nf 1396 |
This theorem is referenced by: nalset 3975 bj-nalset 12052 |
Copyright terms: Public domain | W3C validator |