ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exanaliim Unicode version

Theorem exanaliim 1693
Description: A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
Assertion
Ref Expression
exanaliim  |-  ( E. x ( ph  /\  -.  ps )  ->  -.  A. x ( ph  ->  ps ) )

Proof of Theorem exanaliim
StepHypRef Expression
1 annimim 690 . . 3  |-  ( (
ph  /\  -.  ps )  ->  -.  ( ph  ->  ps ) )
21eximi 1646 . 2  |-  ( E. x ( ph  /\  -.  ps )  ->  E. x  -.  ( ph  ->  ps ) )
3 exnalim 1692 . 2  |-  ( E. x  -.  ( ph  ->  ps )  ->  -.  A. x ( ph  ->  ps ) )
42, 3syl 14 1  |-  ( E. x ( ph  /\  -.  ps )  ->  -.  A. x ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1393   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507
This theorem is referenced by:  rexnalim  2519  nssr  3284  nssssr  4308  brprcneu  5620
  Copyright terms: Public domain W3C validator