| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exanaliim | Unicode version | ||
| Description: A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| exanaliim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | annimim 688 |
. . 3
| |
| 2 | 1 | eximi 1623 |
. 2
|
| 3 | exnalim 1669 |
. 2
| |
| 4 | 2, 3 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 |
| This theorem is referenced by: rexnalim 2495 nssr 3253 nssssr 4266 brprcneu 5569 |
| Copyright terms: Public domain | W3C validator |