ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exanaliim Unicode version

Theorem exanaliim 1658
Description: A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
Assertion
Ref Expression
exanaliim  |-  ( E. x ( ph  /\  -.  ps )  ->  -.  A. x ( ph  ->  ps ) )

Proof of Theorem exanaliim
StepHypRef Expression
1 annimim 687 . . 3  |-  ( (
ph  /\  -.  ps )  ->  -.  ( ph  ->  ps ) )
21eximi 1611 . 2  |-  ( E. x ( ph  /\  -.  ps )  ->  E. x  -.  ( ph  ->  ps ) )
3 exnalim 1657 . 2  |-  ( E. x  -.  ( ph  ->  ps )  ->  -.  A. x ( ph  ->  ps ) )
42, 3syl 14 1  |-  ( E. x ( ph  /\  -.  ps )  ->  -.  A. x ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1362   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472
This theorem is referenced by:  rexnalim  2483  nssr  3239  nssssr  4251  brprcneu  5547
  Copyright terms: Public domain W3C validator