ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nalset Unicode version

Theorem nalset 4148
Description: No set contains all sets. Theorem 41 of [Suppes] p. 30. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
nalset  |-  -.  E. x A. y  y  e.  x
Distinct variable group:    x, y

Proof of Theorem nalset
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 alexnim 1659 . 2  |-  ( A. x E. y  -.  y  e.  x  ->  -.  E. x A. y  y  e.  x )
2 ax-sep 4136 . . 3  |-  E. y A. z ( z  e.  y  <->  ( z  e.  x  /\  -.  z  e.  z ) )
3 elequ1 2164 . . . . . 6  |-  ( z  =  y  ->  (
z  e.  y  <->  y  e.  y ) )
4 elequ1 2164 . . . . . . 7  |-  ( z  =  y  ->  (
z  e.  x  <->  y  e.  x ) )
5 elequ1 2164 . . . . . . . . 9  |-  ( z  =  y  ->  (
z  e.  z  <->  y  e.  z ) )
6 elequ2 2165 . . . . . . . . 9  |-  ( z  =  y  ->  (
y  e.  z  <->  y  e.  y ) )
75, 6bitrd 188 . . . . . . . 8  |-  ( z  =  y  ->  (
z  e.  z  <->  y  e.  y ) )
87notbid 668 . . . . . . 7  |-  ( z  =  y  ->  ( -.  z  e.  z  <->  -.  y  e.  y ) )
94, 8anbi12d 473 . . . . . 6  |-  ( z  =  y  ->  (
( z  e.  x  /\  -.  z  e.  z )  <->  ( y  e.  x  /\  -.  y  e.  y ) ) )
103, 9bibi12d 235 . . . . 5  |-  ( z  =  y  ->  (
( z  e.  y  <-> 
( z  e.  x  /\  -.  z  e.  z ) )  <->  ( y  e.  y  <->  ( y  e.  x  /\  -.  y  e.  y ) ) ) )
1110spv 1871 . . . 4  |-  ( A. z ( z  e.  y  <->  ( z  e.  x  /\  -.  z  e.  z ) )  -> 
( y  e.  y  <-> 
( y  e.  x  /\  -.  y  e.  y ) ) )
12 pclem6 1385 . . . 4  |-  ( ( y  e.  y  <->  ( y  e.  x  /\  -.  y  e.  y ) )  ->  -.  y  e.  x
)
1311, 12syl 14 . . 3  |-  ( A. z ( z  e.  y  <->  ( z  e.  x  /\  -.  z  e.  z ) )  ->  -.  y  e.  x
)
142, 13eximii 1613 . 2  |-  E. y  -.  y  e.  x
151, 14mpg 1462 1  |-  -.  E. x A. y  y  e.  x
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105   A.wal 1362   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-13 2162  ax-14 2163  ax-sep 4136
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472
This theorem is referenced by:  vnex  4149
  Copyright terms: Public domain W3C validator