| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax11ev | Unicode version | ||
| Description: Analogue to ax11v 1841 for existential quantification. (Contributed by Jim Kingdon, 9-Jan-2018.) |
| Ref | Expression |
|---|---|
| ax11ev |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a9e 1710 |
. 2
| |
| 2 | ax11e 1810 |
. . . . 5
| |
| 3 | ax-17 1540 |
. . . . . 6
| |
| 4 | 3 | 19.9h 1657 |
. . . . 5
|
| 5 | 2, 4 | imbitrdi 161 |
. . . 4
|
| 6 | equequ2 1727 |
. . . . 5
| |
| 7 | 6 | anbi1d 465 |
. . . . . . 7
|
| 8 | 7 | exbidv 1839 |
. . . . . 6
|
| 9 | 8 | imbi1d 231 |
. . . . 5
|
| 10 | 6, 9 | imbi12d 234 |
. . . 4
|
| 11 | 5, 10 | mpbii 148 |
. . 3
|
| 12 | 11 | exlimiv 1612 |
. 2
|
| 13 | 1, 12 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |