| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax11ev | Unicode version | ||
| Description: Analogue to ax11v 1841 for existential quantification. (Contributed by Jim Kingdon, 9-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| ax11ev | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | a9e 1710 | 
. 2
 | |
| 2 | ax11e 1810 | 
. . . . 5
 | |
| 3 | ax-17 1540 | 
. . . . . 6
 | |
| 4 | 3 | 19.9h 1657 | 
. . . . 5
 | 
| 5 | 2, 4 | imbitrdi 161 | 
. . . 4
 | 
| 6 | equequ2 1727 | 
. . . . 5
 | |
| 7 | 6 | anbi1d 465 | 
. . . . . . 7
 | 
| 8 | 7 | exbidv 1839 | 
. . . . . 6
 | 
| 9 | 8 | imbi1d 231 | 
. . . . 5
 | 
| 10 | 6, 9 | imbi12d 234 | 
. . . 4
 | 
| 11 | 5, 10 | mpbii 148 | 
. . 3
 | 
| 12 | 11 | exlimiv 1612 | 
. 2
 | 
| 13 | 1, 12 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |