ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axsep2 Unicode version

Theorem axsep2 4108
Description: A less restrictive version of the Separation Scheme ax-sep 4107, where variables  x and  z can both appear free in the wff  ph, which can therefore be thought of as  ph ( x ,  z ). This version was derived from the more restrictive ax-sep 4107 with no additional set theory axioms. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
axsep2  |-  E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph )
)
Distinct variable groups:    x, y, z    ph, y
Allowed substitution hints:    ph( x, z)

Proof of Theorem axsep2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eleq2 2234 . . . . . . 7  |-  ( w  =  z  ->  (
x  e.  w  <->  x  e.  z ) )
21anbi1d 462 . . . . . 6  |-  ( w  =  z  ->  (
( x  e.  w  /\  ( x  e.  z  /\  ph ) )  <-> 
( x  e.  z  /\  ( x  e.  z  /\  ph )
) ) )
3 anabs5 568 . . . . . 6  |-  ( ( x  e.  z  /\  ( x  e.  z  /\  ph ) )  <->  ( x  e.  z  /\  ph )
)
42, 3bitrdi 195 . . . . 5  |-  ( w  =  z  ->  (
( x  e.  w  /\  ( x  e.  z  /\  ph ) )  <-> 
( x  e.  z  /\  ph ) ) )
54bibi2d 231 . . . 4  |-  ( w  =  z  ->  (
( x  e.  y  <-> 
( x  e.  w  /\  ( x  e.  z  /\  ph ) ) )  <->  ( x  e.  y  <->  ( x  e.  z  /\  ph )
) ) )
65albidv 1817 . . 3  |-  ( w  =  z  ->  ( A. x ( x  e.  y  <->  ( x  e.  w  /\  ( x  e.  z  /\  ph ) ) )  <->  A. x
( x  e.  y  <-> 
( x  e.  z  /\  ph ) ) ) )
76exbidv 1818 . 2  |-  ( w  =  z  ->  ( E. y A. x ( x  e.  y  <->  ( x  e.  w  /\  (
x  e.  z  /\  ph ) ) )  <->  E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph )
) ) )
8 ax-sep 4107 . 2  |-  E. y A. x ( x  e.  y  <->  ( x  e.  w  /\  ( x  e.  z  /\  ph ) ) )
97, 8chvarv 1930 1  |-  E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1346   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-cleq 2163  df-clel 2166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator