| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axsep2 | Unicode version | ||
| Description: A less restrictive
version of the Separation Scheme ax-sep 4163, where
variables |
| Ref | Expression |
|---|---|
| axsep2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 |
. . . . . . 7
| |
| 2 | 1 | anbi1d 465 |
. . . . . 6
|
| 3 | anabs5 573 |
. . . . . 6
| |
| 4 | 2, 3 | bitrdi 196 |
. . . . 5
|
| 5 | 4 | bibi2d 232 |
. . . 4
|
| 6 | 5 | albidv 1847 |
. . 3
|
| 7 | 6 | exbidv 1848 |
. 2
|
| 8 | ax-sep 4163 |
. 2
| |
| 9 | 7, 8 | chvarv 1965 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 ax-sep 4163 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |