| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbidv | Unicode version | ||
| Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 |
|
| Ref | Expression |
|---|---|
| exbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 |
. 2
| |
| 2 | albidv.1 |
. 2
| |
| 3 | 1, 2 | exbidh 1660 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11ev 1874 2exbidv 1914 3exbidv 1915 eubidh 2083 eubid 2084 eleq1w 2290 eleq2w 2291 eleq1 2292 eleq2 2293 rexbidv2 2533 ceqsex2 2841 alexeq 2929 ceqex 2930 sbc5 3052 sbcex2 3082 sbcexg 3083 sbcabel 3111 eluni 3891 csbunig 3896 intab 3952 cbvopab1 4157 cbvopab1s 4159 axsep2 4203 zfauscl 4204 bnd2 4257 mss 4312 opeqex 4336 euotd 4341 snnex 4539 uniuni 4542 regexmid 4627 reg2exmid 4628 onintexmid 4665 reg3exmid 4672 nnregexmid 4713 opeliunxp 4774 csbxpg 4800 brcog 4889 elrn2g 4912 dfdmf 4916 csbdmg 4917 eldmg 4918 dfrnf 4965 elrn2 4966 elrnmpt1 4975 brcodir 5116 xp11m 5167 xpimasn 5177 csbrng 5190 elxp4 5216 elxp5 5217 dfco2a 5229 cores 5232 funimaexglem 5404 brprcneu 5620 ssimaexg 5696 dmfco 5702 fndmdif 5740 fmptco 5801 fliftf 5923 acexmidlem2 5998 acexmidlemv 5999 cbvoprab1 6076 cbvoprab2 6077 oprssdmm 6317 dmtpos 6402 tfrlemi1 6478 tfr1onlemaccex 6494 tfrcllemaccex 6507 ecdmn0m 6724 ereldm 6725 elqsn0m 6750 mapsn 6837 breng 6894 bren 6895 brdom2g 6896 brdomg 6897 domeng 6901 en2 6973 ac6sfi 7060 ordiso 7203 ctssdclemr 7279 enumct 7282 ctssexmid 7317 exmidfodomrlemr 7380 exmidfodomrlemrALT 7381 acneq 7384 finacn 7386 acfun 7389 ccfunen 7450 cc1 7451 cc2lem 7452 cc2 7453 cc3 7454 acnccim 7458 recexnq 7577 prarloc 7690 genpdflem 7694 genpassl 7711 genpassu 7712 ltexprlemell 7785 ltexprlemelu 7786 ltexprlemm 7787 recexprlemell 7809 recexprlemelu 7810 cnm 8019 sup3exmid 9104 seq3f1olemp 10737 zfz1isolem1 11062 zfz1iso 11063 sumeq1 11866 sumeq2 11870 summodc 11894 fsum3 11898 fsum2dlemstep 11945 ntrivcvgap0 12060 prodeq1f 12063 prodeq2w 12067 prodeq2 12068 prodmodc 12089 zproddc 12090 fprodseq 12094 fprodntrivap 12095 fprod2dlemstep 12133 ctinf 13001 ctiunct 13011 ssomct 13016 ptex 13297 igsumvalx 13422 gsumpropd 13425 gsumpropd2 13426 gsumress 13428 gsum0g 13429 islssm 14321 islssmg 14322 znleval 14617 uhgrm 15878 lpvtx 15879 incistruhgr 15890 upgrex 15903 uhgredgm 15934 wlkm 16051 bdsep2 16249 bdzfauscl 16253 strcoll2 16346 sscoll2 16351 subctctexmid 16366 domomsubct 16367 nninfall 16375 |
| Copyright terms: Public domain | W3C validator |