| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbidv | Unicode version | ||
| Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 |
|
| Ref | Expression |
|---|---|
| exbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 |
. 2
| |
| 2 | albidv.1 |
. 2
| |
| 3 | 1, 2 | exbidh 1638 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11ev 1852 2exbidv 1892 3exbidv 1893 eubidh 2061 eubid 2062 eleq1w 2268 eleq2w 2269 eleq1 2270 eleq2 2271 rexbidv2 2511 ceqsex2 2818 alexeq 2906 ceqex 2907 sbc5 3029 sbcex2 3059 sbcexg 3060 sbcabel 3088 eluni 3867 csbunig 3872 intab 3928 cbvopab1 4133 cbvopab1s 4135 axsep2 4179 zfauscl 4180 bnd2 4233 mss 4288 opeqex 4312 euotd 4317 snnex 4513 uniuni 4516 regexmid 4601 reg2exmid 4602 onintexmid 4639 reg3exmid 4646 nnregexmid 4687 opeliunxp 4748 csbxpg 4774 brcog 4863 elrn2g 4886 dfdmf 4890 csbdmg 4891 eldmg 4892 dfrnf 4938 elrn2 4939 elrnmpt1 4948 brcodir 5089 xp11m 5140 xpimasn 5150 csbrng 5163 elxp4 5189 elxp5 5190 dfco2a 5202 cores 5205 funimaexglem 5376 brprcneu 5592 ssimaexg 5664 dmfco 5670 fndmdif 5708 fmptco 5769 fliftf 5891 acexmidlem2 5964 acexmidlemv 5965 cbvoprab1 6040 cbvoprab2 6041 oprssdmm 6280 dmtpos 6365 tfrlemi1 6441 tfr1onlemaccex 6457 tfrcllemaccex 6470 ecdmn0m 6687 ereldm 6688 elqsn0m 6713 mapsn 6800 breng 6857 bren 6858 brdom2g 6859 brdomg 6860 domeng 6864 en2 6936 ac6sfi 7021 ordiso 7164 ctssdclemr 7240 enumct 7243 ctssexmid 7278 exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 acneq 7345 finacn 7347 acfun 7350 ccfunen 7411 cc1 7412 cc2lem 7413 cc2 7414 cc3 7415 acnccim 7419 recexnq 7538 prarloc 7651 genpdflem 7655 genpassl 7672 genpassu 7673 ltexprlemell 7746 ltexprlemelu 7747 ltexprlemm 7748 recexprlemell 7770 recexprlemelu 7771 cnm 7980 sup3exmid 9065 seq3f1olemp 10697 zfz1isolem1 11022 zfz1iso 11023 sumeq1 11781 sumeq2 11785 summodc 11809 fsum3 11813 fsum2dlemstep 11860 ntrivcvgap0 11975 prodeq1f 11978 prodeq2w 11982 prodeq2 11983 prodmodc 12004 zproddc 12005 fprodseq 12009 fprodntrivap 12010 fprod2dlemstep 12048 ctinf 12916 ctiunct 12926 ssomct 12931 ptex 13211 igsumvalx 13336 gsumpropd 13339 gsumpropd2 13340 gsumress 13342 gsum0g 13343 islssm 14234 islssmg 14235 znleval 14530 uhgrm 15789 lpvtx 15790 incistruhgr 15801 upgrex 15814 uhgredgm 15842 bdsep2 16021 bdzfauscl 16025 strcoll2 16118 sscoll2 16123 subctctexmid 16139 domomsubct 16140 nninfall 16148 |
| Copyright terms: Public domain | W3C validator |