![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exbidv | Unicode version |
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
exbidv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | albidv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | exbidh 1625 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11ev 1839 2exbidv 1879 3exbidv 1880 eubidh 2048 eubid 2049 eleq1w 2254 eleq2w 2255 eleq1 2256 eleq2 2257 rexbidv2 2497 ceqsex2 2801 alexeq 2887 ceqex 2888 sbc5 3010 sbcex2 3040 sbcexg 3041 sbcabel 3068 eluni 3839 csbunig 3844 intab 3900 cbvopab1 4103 cbvopab1s 4105 axsep2 4149 zfauscl 4150 bnd2 4203 mss 4256 opeqex 4279 euotd 4284 snnex 4480 uniuni 4483 regexmid 4568 reg2exmid 4569 onintexmid 4606 reg3exmid 4613 nnregexmid 4654 opeliunxp 4715 csbxpg 4741 brcog 4830 elrn2g 4853 dfdmf 4856 csbdmg 4857 eldmg 4858 dfrnf 4904 elrn2 4905 elrnmpt1 4914 brcodir 5054 xp11m 5105 xpimasn 5115 csbrng 5128 elxp4 5154 elxp5 5155 dfco2a 5167 cores 5170 funimaexglem 5338 brprcneu 5548 ssimaexg 5620 dmfco 5626 fndmdif 5664 fmptco 5725 fliftf 5843 acexmidlem2 5916 acexmidlemv 5917 cbvoprab1 5991 cbvoprab2 5992 oprssdmm 6226 dmtpos 6311 tfrlemi1 6387 tfr1onlemaccex 6403 tfrcllemaccex 6416 ecdmn0m 6633 ereldm 6634 elqsn0m 6659 mapsn 6746 bren 6803 brdomg 6804 domeng 6808 ac6sfi 6956 ordiso 7097 ctssdclemr 7173 enumct 7176 ctssexmid 7211 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 acfun 7269 ccfunen 7326 cc1 7327 cc2lem 7328 cc2 7329 cc3 7330 recexnq 7452 prarloc 7565 genpdflem 7569 genpassl 7586 genpassu 7587 ltexprlemell 7660 ltexprlemelu 7661 ltexprlemm 7662 recexprlemell 7684 recexprlemelu 7685 cnm 7894 sup3exmid 8978 seq3f1olemp 10589 zfz1isolem1 10914 zfz1iso 10915 sumeq1 11501 sumeq2 11505 summodc 11529 fsum3 11533 fsum2dlemstep 11580 ntrivcvgap0 11695 prodeq1f 11698 prodeq2w 11702 prodeq2 11703 prodmodc 11724 zproddc 11725 fprodseq 11729 fprodntrivap 11730 fprod2dlemstep 11768 ctinf 12590 ctiunct 12600 ssomct 12605 ptex 12878 igsumvalx 12975 gsumpropd 12978 gsumpropd2 12979 gsumress 12981 gsum0g 12982 islssm 13856 islssmg 13857 znleval 14152 bdsep2 15448 bdzfauscl 15452 strcoll2 15545 sscoll2 15550 subctctexmid 15561 nninfall 15569 |
Copyright terms: Public domain | W3C validator |