| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbidv | Unicode version | ||
| Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 |
|
| Ref | Expression |
|---|---|
| exbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1549 |
. 2
| |
| 2 | albidv.1 |
. 2
| |
| 3 | 1, 2 | exbidh 1637 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11ev 1851 2exbidv 1891 3exbidv 1892 eubidh 2060 eubid 2061 eleq1w 2266 eleq2w 2267 eleq1 2268 eleq2 2269 rexbidv2 2509 ceqsex2 2813 alexeq 2899 ceqex 2900 sbc5 3022 sbcex2 3052 sbcexg 3053 sbcabel 3080 eluni 3853 csbunig 3858 intab 3914 cbvopab1 4117 cbvopab1s 4119 axsep2 4163 zfauscl 4164 bnd2 4217 mss 4270 opeqex 4294 euotd 4299 snnex 4495 uniuni 4498 regexmid 4583 reg2exmid 4584 onintexmid 4621 reg3exmid 4628 nnregexmid 4669 opeliunxp 4730 csbxpg 4756 brcog 4845 elrn2g 4868 dfdmf 4871 csbdmg 4872 eldmg 4873 dfrnf 4919 elrn2 4920 elrnmpt1 4929 brcodir 5070 xp11m 5121 xpimasn 5131 csbrng 5144 elxp4 5170 elxp5 5171 dfco2a 5183 cores 5186 funimaexglem 5357 brprcneu 5569 ssimaexg 5641 dmfco 5647 fndmdif 5685 fmptco 5746 fliftf 5868 acexmidlem2 5941 acexmidlemv 5942 cbvoprab1 6017 cbvoprab2 6018 oprssdmm 6257 dmtpos 6342 tfrlemi1 6418 tfr1onlemaccex 6434 tfrcllemaccex 6447 ecdmn0m 6664 ereldm 6665 elqsn0m 6690 mapsn 6777 breng 6834 bren 6835 brdom2g 6836 brdomg 6837 domeng 6841 en2 6912 ac6sfi 6995 ordiso 7138 ctssdclemr 7214 enumct 7217 ctssexmid 7252 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 acneq 7314 finacn 7316 acfun 7319 ccfunen 7376 cc1 7377 cc2lem 7378 cc2 7379 cc3 7380 acnccim 7384 recexnq 7503 prarloc 7616 genpdflem 7620 genpassl 7637 genpassu 7638 ltexprlemell 7711 ltexprlemelu 7712 ltexprlemm 7713 recexprlemell 7735 recexprlemelu 7736 cnm 7945 sup3exmid 9030 seq3f1olemp 10660 zfz1isolem1 10985 zfz1iso 10986 sumeq1 11666 sumeq2 11670 summodc 11694 fsum3 11698 fsum2dlemstep 11745 ntrivcvgap0 11860 prodeq1f 11863 prodeq2w 11867 prodeq2 11868 prodmodc 11889 zproddc 11890 fprodseq 11894 fprodntrivap 11895 fprod2dlemstep 11933 ctinf 12801 ctiunct 12811 ssomct 12816 ptex 13096 igsumvalx 13221 gsumpropd 13224 gsumpropd2 13225 gsumress 13227 gsum0g 13228 islssm 14119 islssmg 14120 znleval 14415 bdsep2 15826 bdzfauscl 15830 strcoll2 15923 sscoll2 15928 subctctexmid 15941 domomsubct 15942 nninfall 15950 |
| Copyright terms: Public domain | W3C validator |