Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exbidv | Unicode version |
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidv.1 |
Ref | Expression |
---|---|
exbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1519 | . 2 | |
2 | albidv.1 | . 2 | |
3 | 1, 2 | exbidh 1607 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax11ev 1821 2exbidv 1861 3exbidv 1862 eubidh 2025 eubid 2026 eleq1w 2231 eleq2w 2232 eleq1 2233 eleq2 2234 rexbidv2 2473 ceqsex2 2770 alexeq 2856 ceqex 2857 sbc5 2978 sbcex2 3008 sbcexg 3009 sbcabel 3036 eluni 3799 csbunig 3804 intab 3860 cbvopab1 4062 cbvopab1s 4064 axsep2 4108 zfauscl 4109 bnd2 4159 mss 4211 opeqex 4234 euotd 4239 snnex 4433 uniuni 4436 regexmid 4519 reg2exmid 4520 onintexmid 4557 reg3exmid 4564 nnregexmid 4605 opeliunxp 4666 csbxpg 4692 brcog 4778 elrn2g 4801 dfdmf 4804 csbdmg 4805 eldmg 4806 dfrnf 4852 elrn2 4853 elrnmpt1 4862 brcodir 4998 xp11m 5049 xpimasn 5059 csbrng 5072 elxp4 5098 elxp5 5099 dfco2a 5111 cores 5114 funimaexglem 5281 brprcneu 5489 ssimaexg 5558 dmfco 5564 fndmdif 5601 fmptco 5662 fliftf 5778 acexmidlem2 5850 acexmidlemv 5851 cbvoprab1 5925 cbvoprab2 5926 oprssdmm 6150 dmtpos 6235 tfrlemi1 6311 tfr1onlemaccex 6327 tfrcllemaccex 6340 ecdmn0m 6555 ereldm 6556 elqsn0m 6581 mapsn 6668 bren 6725 brdomg 6726 domeng 6730 ac6sfi 6876 ordiso 7013 ctssdclemr 7089 enumct 7092 ctssexmid 7126 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 acfun 7184 ccfunen 7226 cc1 7227 cc2lem 7228 cc2 7229 cc3 7230 recexnq 7352 prarloc 7465 genpdflem 7469 genpassl 7486 genpassu 7487 ltexprlemell 7560 ltexprlemelu 7561 ltexprlemm 7562 recexprlemell 7584 recexprlemelu 7585 cnm 7794 sup3exmid 8873 seq3f1olemp 10458 zfz1isolem1 10775 zfz1iso 10776 sumeq1 11318 sumeq2 11322 summodc 11346 fsum3 11350 fsum2dlemstep 11397 ntrivcvgap0 11512 prodeq1f 11515 prodeq2w 11519 prodeq2 11520 prodmodc 11541 zproddc 11542 fprodseq 11546 fprodntrivap 11547 fprod2dlemstep 11585 ctinf 12385 ctiunct 12395 ssomct 12400 bdsep2 13921 bdzfauscl 13925 strcoll2 14018 sscoll2 14023 subctctexmid 14034 nninfall 14042 |
Copyright terms: Public domain | W3C validator |