| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbidv | Unicode version | ||
| Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 |
|
| Ref | Expression |
|---|---|
| exbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1549 |
. 2
| |
| 2 | albidv.1 |
. 2
| |
| 3 | 1, 2 | exbidh 1637 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11ev 1851 2exbidv 1891 3exbidv 1892 eubidh 2060 eubid 2061 eleq1w 2266 eleq2w 2267 eleq1 2268 eleq2 2269 rexbidv2 2509 ceqsex2 2813 alexeq 2899 ceqex 2900 sbc5 3022 sbcex2 3052 sbcexg 3053 sbcabel 3080 eluni 3853 csbunig 3858 intab 3914 cbvopab1 4118 cbvopab1s 4120 axsep2 4164 zfauscl 4165 bnd2 4218 mss 4271 opeqex 4295 euotd 4300 snnex 4496 uniuni 4499 regexmid 4584 reg2exmid 4585 onintexmid 4622 reg3exmid 4629 nnregexmid 4670 opeliunxp 4731 csbxpg 4757 brcog 4846 elrn2g 4869 dfdmf 4872 csbdmg 4873 eldmg 4874 dfrnf 4920 elrn2 4921 elrnmpt1 4930 brcodir 5071 xp11m 5122 xpimasn 5132 csbrng 5145 elxp4 5171 elxp5 5172 dfco2a 5184 cores 5187 funimaexglem 5358 brprcneu 5571 ssimaexg 5643 dmfco 5649 fndmdif 5687 fmptco 5748 fliftf 5870 acexmidlem2 5943 acexmidlemv 5944 cbvoprab1 6019 cbvoprab2 6020 oprssdmm 6259 dmtpos 6344 tfrlemi1 6420 tfr1onlemaccex 6436 tfrcllemaccex 6449 ecdmn0m 6666 ereldm 6667 elqsn0m 6692 mapsn 6779 breng 6836 bren 6837 brdom2g 6838 brdomg 6839 domeng 6843 en2 6914 ac6sfi 6997 ordiso 7140 ctssdclemr 7216 enumct 7219 ctssexmid 7254 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 acneq 7316 finacn 7318 acfun 7321 ccfunen 7378 cc1 7379 cc2lem 7380 cc2 7381 cc3 7382 acnccim 7386 recexnq 7505 prarloc 7618 genpdflem 7622 genpassl 7639 genpassu 7640 ltexprlemell 7713 ltexprlemelu 7714 ltexprlemm 7715 recexprlemell 7737 recexprlemelu 7738 cnm 7947 sup3exmid 9032 seq3f1olemp 10662 zfz1isolem1 10987 zfz1iso 10988 sumeq1 11699 sumeq2 11703 summodc 11727 fsum3 11731 fsum2dlemstep 11778 ntrivcvgap0 11893 prodeq1f 11896 prodeq2w 11900 prodeq2 11901 prodmodc 11922 zproddc 11923 fprodseq 11927 fprodntrivap 11928 fprod2dlemstep 11966 ctinf 12834 ctiunct 12844 ssomct 12849 ptex 13129 igsumvalx 13254 gsumpropd 13257 gsumpropd2 13258 gsumress 13260 gsum0g 13261 islssm 14152 islssmg 14153 znleval 14448 bdsep2 15859 bdzfauscl 15863 strcoll2 15956 sscoll2 15961 subctctexmid 15974 domomsubct 15975 nninfall 15983 |
| Copyright terms: Public domain | W3C validator |