![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exbidv | Unicode version |
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
exbidv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | albidv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | exbidh 1625 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11ev 1839 2exbidv 1879 3exbidv 1880 eubidh 2048 eubid 2049 eleq1w 2254 eleq2w 2255 eleq1 2256 eleq2 2257 rexbidv2 2497 ceqsex2 2800 alexeq 2886 ceqex 2887 sbc5 3009 sbcex2 3039 sbcexg 3040 sbcabel 3067 eluni 3838 csbunig 3843 intab 3899 cbvopab1 4102 cbvopab1s 4104 axsep2 4148 zfauscl 4149 bnd2 4202 mss 4255 opeqex 4278 euotd 4283 snnex 4479 uniuni 4482 regexmid 4567 reg2exmid 4568 onintexmid 4605 reg3exmid 4612 nnregexmid 4653 opeliunxp 4714 csbxpg 4740 brcog 4829 elrn2g 4852 dfdmf 4855 csbdmg 4856 eldmg 4857 dfrnf 4903 elrn2 4904 elrnmpt1 4913 brcodir 5053 xp11m 5104 xpimasn 5114 csbrng 5127 elxp4 5153 elxp5 5154 dfco2a 5166 cores 5169 funimaexglem 5337 brprcneu 5547 ssimaexg 5619 dmfco 5625 fndmdif 5663 fmptco 5724 fliftf 5842 acexmidlem2 5915 acexmidlemv 5916 cbvoprab1 5990 cbvoprab2 5991 oprssdmm 6224 dmtpos 6309 tfrlemi1 6385 tfr1onlemaccex 6401 tfrcllemaccex 6414 ecdmn0m 6631 ereldm 6632 elqsn0m 6657 mapsn 6744 bren 6801 brdomg 6802 domeng 6806 ac6sfi 6954 ordiso 7095 ctssdclemr 7171 enumct 7174 ctssexmid 7209 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 acfun 7267 ccfunen 7324 cc1 7325 cc2lem 7326 cc2 7327 cc3 7328 recexnq 7450 prarloc 7563 genpdflem 7567 genpassl 7584 genpassu 7585 ltexprlemell 7658 ltexprlemelu 7659 ltexprlemm 7660 recexprlemell 7682 recexprlemelu 7683 cnm 7892 sup3exmid 8976 seq3f1olemp 10586 zfz1isolem1 10911 zfz1iso 10912 sumeq1 11498 sumeq2 11502 summodc 11526 fsum3 11530 fsum2dlemstep 11577 ntrivcvgap0 11692 prodeq1f 11695 prodeq2w 11699 prodeq2 11700 prodmodc 11721 zproddc 11722 fprodseq 11726 fprodntrivap 11727 fprod2dlemstep 11765 ctinf 12587 ctiunct 12597 ssomct 12602 ptex 12875 igsumvalx 12972 gsumpropd 12975 gsumpropd2 12976 gsumress 12978 gsum0g 12979 islssm 13853 islssmg 13854 znleval 14141 bdsep2 15378 bdzfauscl 15382 strcoll2 15475 sscoll2 15480 subctctexmid 15491 nninfall 15499 |
Copyright terms: Public domain | W3C validator |